Discriminative Embeddings of
Latent Variable Models for
Structured Data

(ICML 2016)

Hanjun Dai , Bo Dai , Le Song,
College of Computing, Georgia Institute of Technology
https://qdata.github.io/deep2Read
Presenter: Arshdeep Sekhon

Fall 2018



https://qdata.github.io/deep2Read

@ kernel methods: two step process

o feature representations of these kernels independent of
discriminative task
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Kernels

@ Bag of Structures Kernels:

@ the feature representations of these kernels are fixed before
learning, with each dimension corresponding to a substructure
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Kernels

@ Bag of Structures Kernels:

@ the feature representations of these kernels are fixed before
learning, with each dimension corresponding to a substructure

o GM kernels:

@ kernels based on probabilistic graphical models

@ Example, Fisher kernel: fits a common generative model to
the entire dataset, and then uses the empirical Fisher

information matrix and the Fisher score of each data point to
define the kernel

@ probability product kernel: different generative model for each
data point, and then uses inner products between distributions
to define the kernel
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Structure2vec

@ learn the feature representation from label information

@ scale up (not save the entire kernel matrix)
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Structure2vec

learn the feature representation from label information
scale up (not save the entire kernel matrix)

model each structured data point as a latent variable model
embed the graphical model into feature spaces

inner product in the embedding space to define kernels.

learn the feature space by directly minimizing the empirical
loss defined by the label information
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Hilbert Space Embedding of Distributions

@ map distributions to potentially infinite dimensional feature
spaces

@ map distributions to expected feature map

@ possibly injective (gaussian kernel)

MWZMWWH:LWW@WipHI

px = Ex(K(X, )] = Ex[6(00] = [ 6(a) dP(a)



Hilbert Space Embedding of Distributions

@ treat expected feature map ux as a sufficient statistic
o f(p(x)) = f(ux)

[ J d \VC [J C(



Hilbert Space Embedding of Distributions

@ treat expected feature map ux as a sufficient statistic
o f(p(x)) = f(ux)

e Operator T : P — R

o Top(x)=T0oux



Model for a structured data point

every data point is a graph

each node has value x;

each data point is an instance from a graphical model
Each Node has X; with a hidden variable H;

graphical model structure of each data point as conditional
independece structure

p({H:} AX:}) o [ @, Xi) [ v, Hy)
eV | Gee
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Pairwise Markov Random Fields

Y = Energy level

Y = active/inactive 0~ 1
1 C
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Embedding Latent Variable Models

o p(H:|{x;}) embed this into a feature map ¢(H;) € R?

@ very hard to compute

p(tad) = [ pe g} ) TT dn.

JEV\i



Belief Propagation: Introduction

@ for estimating marginals

@ Usually, probability defined in terms of product groups

1
p(x1,x2,x3) = ?f(XhXZ)g(Xl; x3)h(x1, X2, x3) (1)

o f,g,h are potentials or functions to determine probabilities

@ in some cases, conditional probabilities

[ J d \V/C [J C(



Belief Propagation: Introduction

o Marginals: p(x1), p(x2), p(x3)
@ maximizer: argmax p(xi,x2, X3, Xn)
@ say each has S states

e O(S") complexity: exhaustive addition or exhaustive search
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Belief Propagation: Introduction

@ neighbors pass messages to nodes
@ estimate marginal probability for the state spaces of the nodes

e Estimated marginal probabilities: beliefs
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Pairwise Markov Random Field

N
1 .
P(X17X27"'7Xn) = 7Hgi(xi) H f;J(XHX_/)
i=1

<ij>

e g,f are unary and pairwise factors/potentials

@ BP also for factor graphs
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Message Passing

Node i sends to Node j: mj;(x;)

high value of message: node i "believes” marginal value P(x;)
is high

random or uniform initialization

For mjj(x;): messages into i (except from j) also considered
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Message Update

mi () = Tufi(iog)gita) [ mita)  (3)
keNbd(i)——j

mi () = T i (i, x;) h(xi) (4)
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Message Pasing

@ for one pair: message in both directions
o but f;(xi,x;) = fii(xj, xi)
@ not the same as symmetric potential

@ incoming messages for a node sum to 1: ¥, m;(x;) =1



Schedule

@ update everything in parallel vs one msg at a time

@ depends on graph structure
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bi(x;) o< gi(xi) H myi(x;) (5)
keNbd(i)

@ exact marginal probability if normalized beleif and no loops

@ can be easily formulated as max product to find best state
configuration

@ factor graph variation also exists
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node p meid,i(x;)
mrow(x;)

Example (Sum-Product) /mef:

node g melx;)

o mii () Z/ (w15 q( I )
B 1 keNbd(i w\,
’( i)
A>A 1
A->B 2
B->A 3
B->B 4

A 1x2 +3x1
B 2X2 +4x1



node p moid (x;)

Example (Sum-Product)

A 2

B 1
A->A
A->B
B->A
B->B

[ee]

mi;

meew )
node i —> node j

node q "'O/dﬂ'(x )

- S tensaie)
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Example

node p mod (x;)

)
Example (Sum-Product) .
node q el
A 2 mi () =3 fioa)gi@) [T mi(a)
B 1 zi N KENbA(i)\j o
h(z;)
A->A 1
A->B 2
B->A 3
L A 2x (5x5)
B 1x(8x8)
A 5 5
B 8 / B
A 2 A 2
ac bl B
fiilig Computer Science Advanced M. uieience 85
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Loopy Belief Propagation: Approximation

@ Run BP on loopy graph
@ Message passing performs well on tree structured graphs.

o for loopy graphs , messages may circulate indefinitely around
the loops : may not converge.

@ Even when they converge, the stable equilibrium may not
represent the posterior probabilities of the nodes.
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Loopy Belief Propagation: Theory

define the true distribution (P) over a graphical model as
P(X) =~ H fa(X (6)
facF

F denotes the set of all factors

P is the product of the individual factors in the the factor graph

ELBO:
—Ho(X) — Xr,erEqlog(fa(Xa)) (7)
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Loopy Belief Propagation: Theory

For a tree graph:
=[] balxa) T bi(x) (8)
a i

Entropy for tree structured:

Hipee ==Y ba(2a)logba(z, +Z (d; — 1) Zb(x, ) log b; ()

a x4

Ftree—zzb -Tu 10 fa a +Z 1— Zb logb :CL

*F12+F23+~--+F67+F78_F1_F5_F2_F6_F3_F7
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Loopy Belief Propagation: Theory

Take tree elbo as approximation for general factor graphs: called
bethe free energy

FBcthe Zzb ma 10 +z 1 - )Zbl(ml)logbz(mz)

—F12+F23+...+F67+F78—F1—F5—2F2—2F6—...—F8
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Loopy Belief Propagation: Theory Proof

L= Fgemzm{lfzb ,)}+z T S { (=) zbaw}

@ ieN(a)

Setting the derivate with respect to the paramaters to zero:

. =0 = by ex Nai (@i
Obi(1) () o< exp (- 71“21\%) )
oL

() =0 = b (X,) o< exp( log fo(X,) + E Aai(@

ieN(a)

), we obtain:

If we set A\gi(x;) = logmi_q = log Hng(I)\a mp—si(;

) o< fila:) H Masi(,

aeN (i)

ba(Xa) o< fa(X, H H Meyi(T;)

i€N(a) ceN(i)\a

Now, if we use the fact that mg,_;(2;) Zx \1 X,). where we are excluding the message m;_,,:

masi@) = 3 faXa) [T TI meoslas)

Xa\z: JEN(a)\ibEN (j)\a

(28)

(29)

(30)

(31)

(32)



Loopy Belief Propagation

we do not need to optimize explicitly for q(X) over the entire space
of possibilities

We can just focus on the set of doubleton and singleton beliefs to
relax the optimization objective

b* = arg gg‘l‘? {FBethe(p, b)}
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Mean Field Inference: Background

Posterior hard to compute:

_ p(z,x|e)
p(z|x, o) = T plz,x]a) (9)

KL divergence:

— Ellog 92)
KL(qllp) = Ellog 7 5] (10)
ELBO (Variational Free Energy):
Eqllogp(x; 2)] — E[log(a(2))] (11)

(12)
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Mean Field Inference: Variational Distribution

@ assume the variational distribution over the latent variables
factorizes as

q(Zl,Zg,...,Zm) :Hq(zj) (13)
j=1

@ Not the true posterior: the latent variables are independent
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Mean Field Variational Inference

e approximate p({H;}|{xi}) with a product of independent
density components [\ q(i(hi))

min o [Liey 4:(h:)
[ TLastnros ciestto i T ane

i€V

log gi(hi) =c; + log(®(hi,z:)) + Y /Qj(hj)IOg(\I’(hiahJ’)@(hhxj))th
jeN( M

=c, +log ®(hi,z:) + Y /qj(hj)logqf(hi,hj)dhj
jeN@ M
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Embedding Mean Field Variational Inference

@ gi(h;) is a functional of set of neighboring marginals {q;};cn;

qi(hi) = f(hi, xi. {q;}jen(i))
for each marginal g;, we have an injective embedding

i = / &(hi)qi(hi) (14)

qi(hi) = F(hi,xi, {1t jen()
i = T © (xi, {/1}jen(iy)

parametrize T before hand

use any nonlinear function mappings. For instance, we can
parameterize it as a neural network

pi = o(Wix; + WaXjen(iiij)

[ J d \V/C [J C(



Embedded Mean Field

Algorithm 1 Embedded Mean Field

: Input: parameter W in T
: Initialize u( ) = 0, forallieV
:fort=1to T do
fori €V do
li = Z]GN(i) ﬁgt Y
N(t) = U'(Wl.’liz + Wal; )
end for
: end for{fixed point equation update}
: return {f] }iey
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Embedding Loopy Belief Propagation

min g3 e ~ Su(N O] = 1) fyo0i(ho) log Gl ydhi + Xs [ 0 (i hs) 108 st o amy dhidhs

H keN i)\

JEN(4)
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Embedding Loopy Belief Propagation

mij(hy) = f (hj, zis {Mritrenn) »
i (hi) = g (has @iy (M Yren(s)) -

%y = Tio (-Tia {Uki}ke:v(i)\j) )
B = T (o Biidnents)

F
Il

Uiy = G‘(WL% + Ws Z 5m)
keN(D\J

Hi = U(Wzm + Wy Z gm)
KEN(3)
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Discriminative Training

Algorithm 3 Discriminative Embedding

Input: Dataset D = {Xn,Yn }2—, loss function I(f(x),y).
Initialize U® = {W? u®} randomly.
fort=1toT do
Sample {x¢,y:} uniform randomly from D.
Construct latent variable model p({H}}|xx») as (5).
Embed p({H}}|xn) as {i} };cy, by Algorithm 1 or 2 with W1,
Update Ut = U1 + A, Ve I(f(a™; UL, y,).
end for
return UT = {W7T uT}
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@ Baselines : Kernels + SVM
e SCOP dataset (7329 sequences)

@ FCRES data: CRISPR Cas9 dataset, whether guide RNA will
direct Cas9 to target DNA (5310 guides)

FCRES SCOP

kmer-single

0.7606+0.0187

0.7097+0.0504

kmer-concat

0.7576+0.0235

0.8467+0.0489

mismatch 0.7690+£0.0197 0.8637+0.1192
fisher 0.7332£0.0314 0.8662+0.0879
DE-MF 0.77134+0.0208 | 0.90684-0.0685
DE-LBP 0.7701+0.0225 | 0.9167+0.0639
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Harvard Clean Energy PRoject

@ overall efficiency of the energy conversion process in a solar
cell ; power conversion efficiency (PCE)
@ expensive simulations for the 2.3 million candidate molecules

08 CEP test error Prediction quality
07 — DE-MF-iter-1 05
— DE-MF-iter-2
1 DE-MF-iter-3

08 — DEMF-iter4 04
sl —— DE-LBP-ter-1

. DE-LBP-ter-2

¢ I — DE-LBP-ter-3 yos:

v 0.2

05

4 6 8
PCE range
(b) Prediction quality

1 15
#iterations %108

(a) Test error vs iterations

Figure 4: Details of training and prediction results for DE-MF and DE-LBP with different number of fixed
point iterations.

test MAE | test RMSE | # params
Mean Predictor 1.9864 2.4062
WL 1v-3 0.1431 0.2040 1.6m
WL lv-6 0.0962 0.1367 1378m
DE-MF 0.0914 0.1250 0.1m
DE-LBP 0.0850 0.1174 0.Im
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