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Motivation

kernel methods: two step process

feature representations of these kernels independent of
discriminative task
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Kernels

Bag of Structures Kernels:

the feature representations of these kernels are fixed before
learning, with each dimension corresponding to a substructure

GM kernels:

kernels based on probabilistic graphical models

Example, Fisher kernel: fits a common generative model to
the entire dataset, and then uses the empirical Fisher
information matrix and the Fisher score of each data point to
define the kernel

probability product kernel: different generative model for each
data point, and then uses inner products between distributions
to define the kernel
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Structure2vec

learn the feature representation from label information

scale up (not save the entire kernel matrix)

model each structured data point as a latent variable model

embed the graphical model into feature spaces

inner product in the embedding space to de�ne kernels.

learn the feature space by directly minimizing the empirical
loss de�ned by the label information
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Hilbert Space Embedding of Distributions

map distributions to potentially in�nite dimensional feature
spaces

map distributions to expected feature map

possibly injective (gaussian kernel)
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Hilbert Space Embedding of Distributions

treat expected feature map� X as a su�cient statistic

f (p(x)) = ~f (� X )

OperatorT : P ! Rd

T � p(x) = ~T � � X
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Model for a structured data point

every data point is a graph

each node has valuexi

each data point is an instance from a graphical model

Each Node hasXi with a hidden variableHi

graphical model structure of each data point as conditional
independece structure
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Pairwise Markov Random Fields
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Embedding Latent Variable Models

p(Hi jf xi g) embed this into a feature map� (Hi ) 2 Rd

very hard to compute
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Belief Propagation: Introduction

for estimating marginals

Usually, probability de�ned in terms of product groups

p(x1; x2; x3) =
1
Z

f (x1; x2)g(x1; x3)h(x1; x2; x3) (1)

f,g,h are potentials or functions to determine probabilities

in some cases, conditional probabilities
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Belief Propagation: Introduction

Marginals: p(x1); p(x2); p(x3)

maximizer:argmax p(x1; x2; x3; xn)

say each hasS states

O(SN ) complexity: exhaustive addition or exhaustive search
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Belief Propagation: Introduction

neighbors pass messages to nodes

estimate marginal probability for the state spaces of the nodes

Estimated marginal probabilities: beliefs
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Pairwise Markov Random Field

P(x1; x2; : : : ; xn) =
1
Z

NY

i =1

gi (xi )
Y

< ij >

fi j (xi ; xj ) (2)

g,f are unary and pairwise factors/potentials

BP also for factor graphs
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Message Passing

Node i sends to Node j:mij (xj )

high value of message: node i \believes" marginal valueP(xj )
is high

random or uniform initialization

For mij (xj ): messages into i (except from j) also considered
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Message Update

mnew
ij (xj ) = � xi fij (xi ; xj )gi (xi )

Y

k2 Nbd(i )�� j

mold
ki (xi ) (3)

mnew
ij (xj ) = � xi fij (xi ; xj )h(xi ) (4)

Discriminative Embeddings of Latent Variable Models for Structured Data(ICML 2016)



Message Pasing

for one pair: message in both directions

but fij (xi ; xj ) = fji (xj ; xi )

not the same as symmetric potential

incoming messages for a node sum to 1: �xj mij (xj ) = 1
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Schedule

update everything in parallel vs one msg at a time

depends on graph structure
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Read out

bi (xi ) / gi (xi )
Y

k2 Nbd(i )

mki (xi ) (5)

exact marginal probability if normalized beleif and no loops

can be easily formulated as max product to �nd best state
con�guration

factor graph variation also exists
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Example
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Example
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Example
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Loopy Belief Propagation: Approximation

Run BP on loopy graph

Message passing performs well on tree structured graphs.

for loopy graphs , messages may circulate inde�nitely around
the loops : may not converge.

Even when they converge, the stable equilibrium may not
represent the posterior probabilities of the nodes.
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Loopy Belief Propagation: Theory

de�ne the true distribution (P) over a graphical model as

P(X) =
1
Z

Y

fa2 F

fa(Xa) (6)

F denotes the set of all factors

P is the product of the individual factors in the the factor graph

ELBO:
� HQ (X ) � � fa2 F EQ log(fa(Xa)) (7)
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Loopy Belief Propagation: Theory

For a tree graph:

b(x) =
Y

a

ba(xa)
Y

i

bi (xi )1� di (8)

Entropy for tree structured:
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Loopy Belief Propagation: Theory

Take tree elbo as approximation for general factor graphs: called
bethe free energy
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Loopy Belief Propagation: Theory Proof
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Loopy Belief Propagation

we do not need to optimize explicitly for q(X) over the entire space
of possibilities
We can just focus on the set of doubleton and singleton beliefs to
relax the optimization objective
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Mean Field Inference: Background

Posterior hard to compute:

p(zjx; � ) =
p(z; xj� )R
z p(z; xj� )

(9)

KL divergence:

KL(qjjp) = E[log
q(z)

p(zjx)
] (10)

ELBO (Variational Free Energy):

Eq[logp(x; z)] � E[log(q(z))] (11)

(12)
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Mean Field Inference: Variational Distribution

assume the variational distribution over the latent variables
factorizes as

q(z1; z2; : : : ; zm) =
Y

j =1

q(zj ) (13)

Not the true posterior: the latent variables are independent
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Mean Field Variational Inference

approximatep(f Hi gjf xi g) with a product of independent
density components

Q
i 2 V q( i (hi ))
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Embedding Mean Field Variational Inference

qi (hi ) is a functional of set of neighboring marginalsf qj gj 2 Ni

qi (hi ) = f (hi ; xi ; f qj gj 2 N(i ) )

for each marginalqi , we have an injective embedding

~� i =
Z

� (hi )qi (hi )dhi (14)

qi (hi ) = ~f (hi ; xi ; f � j gj 2 N(i ) )

~� i = ~T � (xi ; f ~� gj 2 N(i ) )

parametrize ~T before hand

use any nonlinear function mappings. For instance, we can
parameterize it as a neural network

� i = � (W1xi + W2� j 2 N(i ) ~� j )
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