GAN DISSECTION: VISUALIZING AND UNDERSTANDING GENERATIVE ADVERSARIAL NETWORKS

David Bau^{1,2}, Jun-Yan Zhu¹, Hendrik Strobelt^{2,5}, Bolei Zhou³, Joshua B. Tenenbaum¹, William T. Freeman^{1,4}, Antonio Torralba^{1,2}

¹Massachusetts Institute of Technology, ²MIT-IBM Watson AI Lab, ³The Chinese University of Hong Kong, ⁴Google Research, ⁵IBM Research

ICLR 2019

Presenter: Jack Lanchantin

Introduction

- G: $z \rightarrow x$, where $z \in R |z|$ and $x \in \mathbb{R}^{H \times W \times 3}$
- Tensor r output from a particular layer of G: r = h(z) and x = f(r) = f(h(z)) = G(z)
- r certainly contains the information to deduce the presence of any visible class c in the image
- Question is how the information about c is encoded in r

Introduction

• In particular, we seek to understand whether r explicitly represents the concept c in some way where it is possible to factor r at locations P into components

$$\mathbf{r}_{\mathbb{U},\mathrm{P}} = (\mathbf{r}_{\mathrm{U},\mathrm{P}},\mathbf{r}_{\overline{\mathrm{U}},\mathrm{P}})$$

where the generation of the object c at locations P depends mainly on the units $r_{\text{U.P}}$ and is insensitive to the other units $r_{\bar{\text{U.P}}}$

- Refer to each channel of the featuremap as a unit; U denotes the set of unit indices of interest and denotes its complement
- ullet we will write ${\mathbb U}$ and ${\mathbb P}$ to refer to the entire set of units and feature map pixels in r

Characterizing Units by Dissection

 Quantify the spatial agreement between the unit U's thresholded featuremap and a concept c' segmentation with the following intersection-over-union (IoU) measure:

$$ext{IoU}_{u,c} \equiv rac{\mathbb{E}_{\mathbf{z}} \left| (\mathbf{r}_{u,\mathbb{P}}^{\uparrow} > t_{u,c}) \wedge \mathbf{s}_c(\mathbf{x})
ight|}{\mathbb{E}_{\mathbf{z}} \left| (\mathbf{r}_{u,\mathbb{P}}^{\uparrow} > t_{u,c}) ee \mathbf{s}_c(\mathbf{x})
ight|}$$

where \wedge and \vee denote intersection and union, $t_{u,c}$ is a fixed threshold, and $s_c(x)$ is a binary segmentation mask for concept c

Characterizing Units by Dissection

Characterizing Units by Dissection

Thresholding unit #65 layer 3 of a dining room generator matches 'table' segmentations with IoU=0.34.

Thresholding unit #37 layer 4 of a living room generator matches 'sofa' segmentations with IoU=0.29.

Figure 3: Visualizing the activations of individual units in two GANs. 10 top activating images are shown, and IoU is measured over a sample of 1000 images. In each image, the unit feature is upsampled and thresholded as described in Eqn. 2.

- Which of those units are actually responsible for triggering the rendering of that object?
 - Correlation != causation
 - Furthermore, any output will jointly depend on several parts of the representation (need to identify combinations)

- Recall that r_{UP} denotes the feature map r at unit U and location P
- **Ablate** such unit by forcing $\mathbf{r}_{U.P} = 0$.
- Insert such unit by forcing r_{UP} = c, where c is a big constant.
- Decompose r into two parts ($\mathbf{r}_{\mathsf{U},\mathsf{P},}$ $\mathbf{r}_{\mathsf{U},\mathsf{P}}$), where $\mathbf{r}_{\mathsf{U},\mathsf{P}}$ are unforced components of \mathbf{r}

Original image:

Image with U ablated at pixels P:

Image with U inserted at pixels P:

$$\mathbf{x} = G(\mathbf{z}) \equiv f(\mathbf{r}) \equiv f(\mathbf{r}_{U,P}, \mathbf{r}_{\overline{U,P}})$$

$$\mathbf{x}_a = f(\mathbf{0}, \mathbf{r}_{\overline{\mathbf{U}, \mathbf{P}}})$$

$$\mathbf{x}_i = f(\mathbf{c}, \mathbf{r}_{\overline{\mathbf{U}, \mathbf{P}}})$$

- Recall that r_{U.P} denotes the feature map r at unit U and location P
- **Ablate** such unit by forcing $\mathbf{r}_{U.P} = 0$.
- Insert such unit by forcing r_{UP} = c, where c is a big constant.
- Decompose r into two parts ($\mathbf{r}_{\mathsf{U},\mathsf{P},}$ $\mathbf{r}_{\mathsf{U},\mathsf{P}}$), where $\mathbf{r}_{\mathsf{U},\mathsf{P}}$ are unforced components of \mathbf{r}

Image with U ablated at pixels P:

Image with U inserted at pixels P:

$$\mathbf{x} = G(\mathbf{z}) \equiv f(\mathbf{r}) \equiv f(\mathbf{r}_{U,P}, \mathbf{r}_{\overline{U,P}})$$

$$\mathbf{x}_a = f(\mathbf{0}, \mathbf{r}_{\overline{\mathbf{U}, \mathbf{P}}})$$

$$\mathbf{x}_i = f(\mathbf{c}, \mathbf{r}_{\overline{\mathbf{U}, \mathbf{P}}})$$

An object is caused by U if the object appears in x and disappears from x and disappe

- This causality can be quantified by comparing the presence of an object in x_i and x_a and averaging effects over all locations and images
- Define the average causal effect (ACE) of unit U on the generation of on class c as:

$$\delta_{\mathrm{U} o c} \equiv \mathbb{E}_{\mathbf{z},\mathrm{P}}[\mathbf{s}_c(\mathbf{x}_i)] - \mathbb{E}_{\mathbf{z},\mathrm{P}}[\mathbf{s}_c(\mathbf{x}_a)]$$

where $\mathbf{s}_{c}(\mathbf{x})$ denotes a segmentation indicating the presence of class c in image \mathbf{x} at P

Sets of Units with High Causal Effect

- Objects tend to depend on more than one unit.
- Thus we need to identify a set of units U that maximize the average causal effect $\delta_{U\to c}$ for a class c

Finding sets of units with high average causal effect

- Given a representation \mathbf{r} with d units, searching for a fixed-size set U with high $\delta_{\mathrm{U}\to\mathrm{c}}$ requires $\binom{d}{|\mathrm{U}|}$ operations
- Instead, we optimize a continuous intervention $\alpha \in [0, 1]^d$, where each dimension $\alpha_{..}$ indicates the degree of intervention for unit u.

Finding sets of units with high average causal effect

• We maximize the following average causal effect formulation $\delta_{\alpha \to c}$:

Image with partial ablation at pixels P: $\mathbf{x}_a' = f((\mathbf{1} - \boldsymbol{\alpha}) \odot \mathbf{r}_{\mathbb{U},P}, \ \mathbf{r}_{\mathbb{U},\overline{P}})$ Image with partial insertion at pixels P: $\mathbf{x}_i' = f(\boldsymbol{\alpha} \odot \mathbf{c} + (\mathbf{1} - \boldsymbol{\alpha}) \odot \mathbf{r}_{\mathbb{U},P}, \ \mathbf{r}_{\mathbb{U},\overline{P}})$ Objective: $\delta_{\boldsymbol{\alpha} \to c} = \mathbb{E}_{\mathbf{z},P} \left[\mathbf{s}_c(\mathbf{x}_i') \right] - \mathbb{E}_{\mathbf{z},P} \left[\mathbf{s}_c(\mathbf{x}_a') \right],$

where $r_{U,P}$ denotes the all-channel featuremap at locations P, $r_{U,P}$ denotes the all-channel featuremap at other locations \bar{P} , and applies a per-channel scaling vector α to the featuremap $r_{U,P}$

$$\alpha^* = \arg\min_{\alpha} (-\delta_{\alpha \to c} + \lambda ||\alpha||_2)$$

Finding sets of units with high average causal effect

Units that match objects (from layer 4 of trained CNN)

A unit is counted as a class predictor if it matches a supervised segmentation class with pixel accuracy > 0.75 and IoU > 0.05 when upsampled and thresholded.

Comparing Layer Differences

Units in layer Unit class distribution layer1 ceiling layer1 #457 iou=0.12 ceiling layer1 #194 iou=0.08 512 units total 2 object units sjiun 1 0 part units 0 material units sofa layer4 #37 layer4 iou=0.28 fireplace layer4 #23 iou=0.16 512 units total 29 parts sul11 89 object units 159 part units 7 material units layer7 painting layer7 #15 iou=0.28 coffee table-t #247 iou=0.08 256 units total 52 object units 69 part units 17 material units carpet layer10 #53 iou=0.15 glass layer10 #126 iou=0.22 layer10 128 units total 18 object units 9 part units 13 material units

Ablating Artifacts

(f) Bedroom images with artifacts

(g) Ablating "artifacts" units improves results

Ablate the 20 artifact-causing units out of 512 units in layer4.

Ablating Artifacts

Fréchet Inception Distance (FID)		Human preference score	original images
original images "artifacts" units ablated (ours) random units ablated	52.87 32.11 52.27	"artifacts" units ablated (ours) random units ablated	79.0 % 50.8%

Ablating Objects

ablate person units

ablate window units

ablate table units

Inserting Objects

