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Deep Graph Infomax (DGI)

e General approach for learning node representations within graph-structured
data in an unsupervised manner.

e DGl relies on maximizing mutual information between nodes (or groups of
nodes) and a high-level summary of the graph.



Unsupervised Node Representation Learning

e Key idea: train an encoder so that nodes that are “close” in the input graph are
also “close” in the representation space.
o Previous Works: define “close” by random walks out from a chosen node
e This Paper: node learning based on mutual information, rather than random
walks.



Background: Contrastive Methods

e Using a scoring function, train the encoder to increase the score on positive
examples and decrease the score on negative samples.
o E.g. Collobert & Weston 2008, Mikolov et. al. 2013 (Word2Vec)



Graph Based Unsupervised Learning

e Given
o Set of node features X = {x1,x2,...,xN}, where N is # of nodes, X € RF
o Binary adjacency matrix, A € RN

e Objective
o Learn an encoder, E such that E(X,A)=H =¢{h_h,,...h }, h € R"



Local-Global Mutual Information Maximization

e DGl attempts to find node (i.e., local, or patch) representations that capture the
global information content of the entire graph by maximizing local mutual

information
e This allows for discovering and preserving similarities on the patch-level—for

example, distant nodes with similar structural roles



Local-Global Mutual Information Maximization

e Graph-level summary vectors s = R(E(X, A))
o Readout function, R: RN — RF
o R used to summarize the obtained patch representations into a
graph-level representation

e Discriminator D: RF — R, such that D(h., s) represents the probability scores
assigned to this patch-summary pair (should be higher for patches contained
within the summary)

o Proxy for maximizing the local mutual information



Sampling Negative Patches for Ml Maximization

~

e Negative samples are provided by patch representations hj of an alternative
graph, (X,A) .
e Alternative graph is created from a corrupted original graph using corruption

function C:
o (X,A)=C(X, A)



Maximizing MI for DGI (standard binary cross entropy)
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Local-Global Mutual Information Maximization




Experiment 1: Transductive

Transductive learning. We utilize three standard citation network benchmark datasets—Cora, Cite-
seer and Pubmed (Sen et al., 2008)—and closely follow the transductive experimental setup of Yang
et al. (2016). In all of these datasets, nodes correspond to documents and edges to (undirected)
citations. Node features correspond to elements of a bag-of-words representation of a document.
Each node has a class label. We allow for only 20 nodes per class to be used for training—however,
honouring the transductive setup, the unsupervised learning algorithm has access to all of the nodes’
feature vectors. The predictive power of the learned representations is evaluated on 1000 test nodes.



Experiment 1: Transductive

For the transductive tasks, we report the mean classification accuracy (with standard deviation)
on the test nodes of our method after 50 runs of training (followed by logistic regression), and
reuse the metrics already reported in Kipf & Welling (2016a) for the performance of DeepWalk and
GCN, as well as Label Propagation (LP) (Zhu et al., 2003) and Planetoid (Yang et al., 2016)—a
representative fully supervised random walk method. Specially, we provide results for training the
logistic regression on raw input features, as well as DeepWalk with the input features concatenated.



Experiment 1: Transductive

Transductive (Classification Accuracy)

-

Available data Method Cora Citeseer Pubmed

X Raw features 479+ 04% 493+02% 69.1 +0.3%
2% W LP (Zhu et al., 2003) 68.0% 45.3% 63.0%

A DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%

X, A DeepWalk + features 707 +£06% 514+05% 74.3 +0.9%
X, A Random-Init (ours) 693+14% 619+1.6% 69.6+1.9%
X, A DGI (ours) 823+06% 71.8+07% 76.8+ 0.6%
X,AY GCN (Kipf & Welling, 2016a) 81.5% 70.3% 79.0%

X, AY Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%




Experiment 2: Inductive

Inductive learning on large graphs. We use a large graph dataset (231,443 nodes and 11,606,919
edges) of Reddit posts created during September 2014 (derived and preprocessed as in Hamilton
et al. (2017a)). The objective is to predict the posts’ community (“subreddit”), based on the GloVe
embeddings of their content and comments (Pennington et al., 2014), as well as metrics such as score
or number of comments. Posts are linked together in the graph if the same user has commented on
both. Reusing the inductive setup of Hamilton et al. (2017a), posts made in the first 20 days of
the month are used for training, while the remaining posts are used for validation or testing and are
invisible to the training algorithm.



Experiment 2: Inductive

For the inductive tasks, we report the micro-averaged F; score on the (unseen) test nodes, aver-
aged after 50 runs of training, and reuse the metrics already reported in Hamilton et al. (2017a) for
the other techniques. Specifically, as our setup is unsupervised, we compare against the unsuper-
vised GraphSAGE approaches. We also provide supervised results for two related architectures—
FastGCN (Chen et al., 2018) and Avg. pooling (Zhang et al., 2018).



Experiment 2: Inductive

Inductive (F1 Scores)

Available data Method Reddit PPI

X Raw features 0.585 0.422

A DeepWalk (Perozzi et al., 2014) 0.324 —

X, A DeepWalk + features 0.691 —

X, A GraphSAGE-GCN (Hamilton et al., 2017a) 0.908 0.465

X, A GraphSAGE-mean (Hamilton et al., 2017a) 0.897 0.486

X, A GraphSAGE-LSTM (Hamilton et al., 2017a)  0.907 0.482

X, A GraphSAGE-pool (Hamilton et al., 2017a) 0.892 0.502

X, A Random-Init (ours) 0.933 £ 0.001 0.626 &= 0.002
X, A DGI (ours) 0.940 + 0.001  0.638 + 0.002
X,AY FastGCN (Chen et al., 2018) 0.937 —

X,AY Avg. pooling (Zhang et al., 2018) 0.958 +£0.001 0.969 + 0.002




Figure 3: t-SNE embeddings of the nodes in the Cora dataset from the raw features (left), features
from a randomly initialized DGI model (middle), and a learned DGI model (right). The clusters of

the learned DGI model’s embeddings are clearly defined, with a Silhouette score of 0.234.



Background: Mutual Information

e Measures the information that X and Y share: It measures how much knowing
one of these variables reduces uncertainty about the other
o E.g.if Xand Y are independent, then knowing X does not give any
information about Y and vice versa, so I(X;Y) =0
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