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Today

» * Machine Learning: a quick review

* Deep Learning: a quick review https://qdata.github.io/deep2Read/
* Background Biology: a quick review

* Deep Learning for analyzing Sequential Data about Regulation:
 DeepChrome
e AttentiveChrome

* DeepMotif https://www.deepchrome.org
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OUR DATA-RICH WORLD

* Biomedicine
« Patient records, brain imaging, MRI & CT scans, ...
* Genomic sequences, bio-structure, drug effect info, ...

e Science

« Historical documents, scanned books, databases from
astronomy, environmental data, climate records, ...

* Social media

* Social interactions data, twitter, facebook records, online
reviews, ...

* Business
» Stock market transactions, corporate sales, airline traffic,

8/29/18 e Yanjun Qi / UVA CS



Challenge of Data Explosion in Biomedicine

Molecular signatures of
tumor / blood ¢ . %

Signs &
Symptoms

Information E Traditional
Explosion Approaches

Patient Medical ===

History &
Demographics

AVolume
AVariety
AVelocity

Public Health
Data

Machine
— Learning

Mobile medical ‘8’*
sensor data
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BASICS OF MACHINE LEARNING

« “The goal of machine learning is to build
computer systems that can learn and adapt
from their experience.” — Tom Dietterich

« “Experience” in the form of available data
examples (also called as instances, samples)

» Available examples are described with
properties (data points 1n feature space X)
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e.o. SUPERVISED LEARNING

* Find function to map input space X to output

space Y fZX—>Y

» So that the difference between y and f(x) of
each example x 1s small.

e.g.

X | 1believethatthisbookis
not at all helpful since it
does not explain thoroughly > -1
the material . it just provides
the reader with tables and
calculations that sometimes
are not easilyunderstood...

Output Y: {1/Yes, -1/ No}
e.g. Isthis a positive product review ?

Input X : e.g. a piece of English text
8/29/18 Yanjun Qi / UVA CS



SUPERVISED Linear Binary Classifier

e Now let us check out a VERY SIMPLE case of

X . f . y

e.g.: Binary y / Linear f / X as R?
f(x,w,b) = sign(w’" x + D)
X=(x_1,x 2)
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SUPERVISED Linear Binary Classifier

X2 X > f - Y

f(x,w,b) = sign(w" x + D)

X=(x_1,x_2)

@ denotes +1 point

B denotes -1 point

? denotes future
points

wT x + b<0

x 1

8/29/18 Yaniun Qi e dift{esy slide from Prof. Andrew Moore’s tutorial



Basic Concepts
* Training (1.e. learning parameters 'W b)

* Training set includes o
e available examples' feature represenation: x,....x;
e available corresponding labels y,....);

* Find (w,b) by minimizing loss (1.e.
difference between y and f(x) on available
examples in training set)

L
w0y =argmin > ~L(f(x;), i)
Wb =]
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Basic Concepts

* Testing (i.e. evaluating performance on “future”
points)

- Difference between true )» and the predicted f(X,) on a set
of testing examples (1.e. testing set)

« Key: example X, not in the training set

* Generalisation: learn function / hypothesis from

past data in order to “explain”, “predict”, “model” or
“control” new data examples

8/29/18 Yanjun Qi / UVA CS 10



Basic Concepts

e LLoss function

* e.g. hinge loss for binary
classification task

L L
Y () y)=y max(0,1-y;f(x;)
i=1 i=1

* Regularization
e E.g. additional information added
on loss function to control f

Maximize Separation Margin => Minimize ||w||21

8/29/18 Yanjun Qi / UVA CS
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Basics of Machine Learning

Input: X Output: Y

8/29/18 Yanjun Qi / UVA CS 12



Basics of Machine Learning

Output: Y
Input: X

Training

e’s |
M = Easmaamag = ®.55
e {% e : ?
mmmmmma

| f(X)=Y |

8/29/18 Yanjun Qi / UVA CS 13



Basics of Machine Learning

Testing
Input: X’ p |
. - @
cC—
Vi =250
Supervised

Classification
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TYPICAL MACHINE LEARNING SYSTEM

Low-level
sensing

Pre-
processing

X

Feature Feature
Extract Select

Label
Collection

Y

Yanjun Qi / UVA CS

f: X —Y

Inference,
Prediction,
Recognition
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TYPICAL MACHINE LEARNING SYSTEM

Data
Complexity in X

Low-level Pre- Feature Feature
sensing processing Extract Select

Data !
Complexity I Labe.l
inY COlleCthn

— o o . . o E—,

Inference,
Prediction,
Recognition

N e e e e -
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UNSUPERVISED LEARNING :
| COMPLEXITY OF Y |

* No labels are provided (e.g. No Y provided)

* Find patterns from unlabeled data, e.g. clustering

SNASANS,
AN ®
O 0O O e.g. clustering => to find
©) o g “natural” grouping of
O O instances given un-labeled
OO G o © S data
@il )
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Structured Output Prediction:
[ COMPLEXITY in Y ]

 Many prediction tasks involve output labels having
structured correlations or constraints among instances

Structured Dependency

between Examples’ Y Sequence Tree Grid
Input \ APAFSVSPASGACGPECA... | The dog chased
i the cat
| o :
OutPUt Y \* / E NP < Building

CcC

~ /N

CCCCCHHHCCC... Det N

~ VP i ;
S e
~ i Car
Vv Det N

Many more possible structures betweeny i, e.g. spatial , temporal, relational ...

8/29/18
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Structured Input: Kernel Methods
| COMPLEXITY OF X |

Vector vs. Relational data

® o
P07
9

~

e.g. Graphs,
Sequences,
3D structures,

Original Space

Feature Space

Yanjun Qi / UVA CS
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More Recent: Representation Learning

| COMPLEXITY OF X |

Deep Learning

Supervised Embedding

Input Sentence:

N ~

Input Sentence The variable HMG dosage regimen was found to offer

word of interest ™
§ text the cat sat on the : * Y * * * * * *
051 0.22 0.01 0.99 0.11
indices s(1) s(2) s(3) s(4) s(5) 0.18 0.18 0.17 0.01 0.32

A -/ 053 0.01 033 0.01 0.80
D ™

Lookup Table
=
=
_qg—' LT, —~_>
[

[ ) [} [ )

U J  Layer-wise Pretraining
Y =

| HardTanh [ )
8 - O-lm O-Il O-Im
i e Y
= Linear
S| - I : J
= | - w
fye f
_8 A\HardTanh [ ] )
G —

/Linear | — )
o~

4 N

\Softmax /] _)

Ve
A

/

Tags
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Why learn features

’

Output

Output

Output

Output
/'y
Hand- Hand-
designed designed
program features
A 4
Input Input Input Input
Rule-based Classic Representation Deep
systems machine learning learning

learning
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When to use Machine Learning ?

e 1. Extract knowledge from data

* Relationshipsand correlations can be hidden withinlarge amounts of data

* The amount of knowledge available about certain tasks is simply too large
for explicitencoding(e.g. rules) by humans

e 2. Learn tasks that are difficult to formalise

* Hard to define well, except by examples (e.g. face recognition)

* 3. Create software that improves over time

- New knowledge is constantly being discovered.

* Rule or human encoding-based system is difficult to continuously re-design
“by hand”.



Recap Fix oy

* Goal of Machine Learning:
Generalisation

* Training
* Testing
* Loss



Today

* Machine Learning: a quick review

» * Deep Learning: a quick review https://qdata.github.io/deep2Read/
* Background Biology: a quick review

* Deep Learning for analyzing Sequential Data about Regulation:
 DeepChrome
e AttentiveChrome

* DeepMotif https://www.deepchrome.org
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* Deep Learning

* * Why is this a breakthrough ?
* Basics

* History
* A Few Recent trends

https://qdata.github.io/deep2Read/

8/29/18 Yanjun Qi / UVA CS
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Deep Learning 1s Changing the World

0.3s ) A8
te.way  Duration: 1.14 seconds

N
LCA DALA LS U TN

HOW may I hdp YOU, Speecg R%cognition

human?

- aladfadiaghot]apg
AL AL

Control learning
Text analysis

Peter H. van Oppen ,
Mr ¥an Oppen has served as
since its acquisition by Interpoint in 1994 and a director of ADIC since 1985. Until its
acquisition by Crane Co. in October 1995, Mt ¥an served as

Prior to 1985, Mr. ¥an
Oppen worked as a at Price Waterhouse LLP and at Bain & Company

in Boston and London, He has additional experience in medical electronics and venture
capital. MEVAR OPPER also serves as a _ and Spacelabs

8/29/18 Medical, Inc.. He holds a B.A. from Whitman College and an M.B.A from Harvard ~ Yanjun Qi / UVA CS
Business School, where he was a Baker Scholar

Object recognition

Many more | .



MIT
Technology
Review

10 Breakthrough
Technologies
2013

hink of the most frustrating, intractable,
or simply annoying problems you can

imagine. Now think about what
technology is doing to fix them. That's what we did
in coming up with our annual list of 10 Breakthrough
Technologies. We're looking for technologies that
we believe will expand the scope of human
possibilities.

Deep Learning

10 Breakthrough
Technologies
2017

hese technologies all have staying power.
They will affect the economy and our

politics, improve medicine, or influence our
culture. Some are unfolding now; others will take a

decade or more to develop. But you should know
about all of them right now.

Deep Reinforcement Learning

Why breakthrough 7

8/29/18
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Generative
Adversarial
Network (GAN)
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Breakthrough from 2012 Large-Scale
Visual Recognition Challenge (ImageNet)
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In one “very large-scale” benchmark competition
(1.2 million images [X] vs.1000 different word labels [Y])
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Arch

ImageNet Challenge H

2010-11: hand-crafted

computer vision pipelines 0.3 ozs
2012-2016: ConvNets 5 s ‘
o 2012: AlexNet @
m major deep learning success & - e
o 2013: ZFNet © |
m improvements over AlexNet o ak
o 2014 @ 01 0.07
m VGGNet: deeper, simpler o 0.036 (.03
m InceptionNet: deeper, faster O . I%
© 2215ResNet' even deeper 2010 2011 2012 2013 2014 2015 2016 2017
o 2016 ILSVRC year
m ensembled networks
o 2017

m Squeeze and Excitation Network

8/29/18 Yanjun Qi / UVA CS 29
Adapt from From NIPS 2017 DL Trend Tutorial



DNNs help us build more intelligent computers

* Perceive the world,
e e.g., objective recognition, speech recognition, ...
e Understand the world,
* e.g., machine translation, text semantic understanding
* Interact with the world,
e e.g., AlphaGo, AlphaZero, self-driving cars, ...
* Being able to think / reason,
*e.g., learn to code programs, learn to search deepNN, ...

* Being able to imagine / to make analogy,
* e.g., learn to draw with styles, ......



Deep Learning Way: Learning Representation from data

Low-evel Pre- Feature Feature

8/29/18

\—'—l

Inference:
— 4 prediction,
recognition

Feature Engineering

v Most critical for accuracy

v Account for most of the computation

v Most time-consuming in development cycle

v' Often hand-craft and task dependent in practice

Feature Learning

v' Easily adaptable to new similar tasks
v' Learn layerwise representation from data

Yanjun Qi / UVA CS



Basics

* Basic Neural Network (NN)
* single neuron, e.g. logistic regression unit
* multilayer perceptron (MLP)

e various loss function
* E.g., when for multi-class classification, softmax layer

* training NN with backprop algorithm



One “Neuron”: Expanded Logistic Regression

X

Summing
Function

Multiply by

+1

weights

» y =P(Y=I|x,w)

D

Sigmoid
Function

Z=wli-X+b

y = sigmoid(z)

33



E.g., Many Possible Nonlinearity Functions

(aka transfer or activation functions)

Name Plot Equation Derivative ( w.r.t x )

_ _JO for <0 vy JO for z#0
Binary step —/— fz) = { 1 for z>0 fle) = { ? for =0
Logistic (a.k.a EEEEERE=Cons 1 TN B
e f) = f@) = f@)(1 - )
TanH f f(z) = tanh(z) = 2 _ 1 "(z) =1 2

an - _ 1+ e22 f (w) — = f(.’L')

Rectifier 0 for z<0 y, v JO for <0
(ReLU)! / fz) = {a: for z>0 fiz) = { 1 for >0

o

usually works best in practice




One “Neuron”: Expanded Logistic Regression => “Neuron View”

$=P(Y=1|x,w)

Input X

p=3 b!

Multiply by
weights

+1

Z=wli-X+b

y =sigmoid(z) = _¢

1+ ée*

35




Multi-Layer Perceptron (MLP)- (Feed-Forward NN)

hidden hidden ~ Output




History =» Perceptron: 1-Neuron Unit with Step

—First proposed by Rosenblatt (1958)

—A simple neuron that is used to classify its input into one of two categories.
—A perceptron uses a step function

X2 >
. Step Function
X3 Summing
Function {-I—l if7>0
¢(z)= -
Multiply by —1ifz<0

+1 weights
8/29/18 Yanjun Qi / UVA CS 37




E.g., Cross-Entropy Loss for Multi-Class Classification

Y \/s‘r. XT

O | 0 [clugsq

Clegs |
Aaugs 2

o

/o

J
Vs \
“Softmax” function. Normalizing

function which converts each class
K=3 output to a probability.

Ey (,y) = loss :Z yiln y;

Cross-entropy loss

38



“Block View”

h, “Softmax”

3] <2 h; <3 s
N el s (g

<

» L (V,y)

1st 2nd
hidden layer hidden layer Output layer Loss Module
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Building Deep Neural Nets

ox

X
<
8E_8E.8y
oxr Oy Ox

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Training Neural Networks

How do we learn the optimal weights /¥, for our task??
e Stochastic Gradient descent:

Wit = W, _ JE
L L V———aWL A

y—» Ey(y)

But how do we get gradients of lower layers?
e Backpropagation!

O Repeated application of chain rule of calculus — Main Idea: error in hidden layers

O Locally minimize the objective
O Requires all “blocks” of the network to be differentiable

41
LeCun et. al. Efficient Backpropagation. 1998



Illustrating Objective Loss Function (extremely

simplified) and Gradient Descent (2D case) The gradient

points in the
| direction (in the
) niyit( W1, W2) variable space) of
the greatest rate
of increase of the
function and its
magnitude is the
a0 slope of the
W surface graph in
that direction

8/29/18 Yanjun Qi / UVA CS



Revolution of Depth Arch

28.2

a3

\ 16.4

EE

‘ 22 Iayers 19 Iayers

357 I

ILSVRC'15  ILSVRC'14  ILSVRC'14 ILSVRC'13  ILSVRC'12  ILSVRC'11 ILSVRC'10
UNTILA ResNet GoogleNet VGG AlexNet

némpl’fgllllél ImageNet Classification top-5 error (%)

e
|

shallow

. VAN

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

8/29/18 Yanjun Qi / UVA CS
Adapt from From NIPS 2017 DL Trend Tutorial
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Important Block: Convolutional Neural Networks (CNN)

* Prof. Yann LeCun invented CNN in 1998
* First NN successfully trained with many layers

The bird occupies a local area and looks the same in different parts of an image.
We should construct neural nets which exploit these properties!

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

44



CNN models Locality and Translation Invariance

Make fully-connected layer locally-connected and sharing weight

/[ 1/ [/ 1/
[ N
Y= Z w;x; +b A y=wx*xr+b
% igh
1ereceptive // ’/ we'g_ t
field Y Lk sharing ¥
/ YV g
0 | >
V.

convolutional units

locally-connected units
with 3x3 receptive field

with 3x3 receptive field
Yanjun Qi / UVA CS

8/29/18
Adapt from From NIPS 2017 DL Trend Tutorial
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Important Block: Recurrent Neural Networks (RNN)

* Prof. Schmidhuber invented "Long short-term memory” — Recurrent
NN (LSTM-RNN) model in 1997

hy @TB %, C?“ ﬁf)
SR P S S S P =
s & & 6 ® e

The repeating module in an LSTM contains four interacting

layers.

Sepp Hochreiter; Jirgen Schmidhuber (1997). "Long short-term memory". Neural Computation. 9 (8): 1735-1780.

8/29/18 Yanjun Qi / UVA CS 46
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RNN models dynamic temporal dependency

Make fully-connected layer model each unit recurrently
Units form a directed chain graph along a sequence
Each unit uses recent history and current input in modeling

Awesome sauce

el [ W[
O > e ' @
o o o
X, r X, — X o LSTM for Machine Translation
! 1 (Germany to English)
(eeee| (ecee| (cocoo]
: 47
Echt dicke Kiste

Image credit : wildML
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* Deep Learning

* Why is this a breakthrough ?
* Basics

* History

* A Few Recent trends

https://qdata.github.io/deep2Read/

Yanjun Qi / UVA CS
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Many classification models
invented since late 80's

* Neural networks

* Boosting

e Support Vector Machine
* Maximum Entropy

* Random Forest



Deep Learning (CNN) in the 90’s

* Prof. Yann LeCun invented Convolutional Neural Networks (CNN) in 1998
* First NN successfully trained with many layers

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
©2'2¥e" Fe: layer OUTPUT

3232 e l'l_ o
i
r

r
r

——

|
I Full oomlection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278—-2324, 1998.
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Deep Learning (RNN) in the 90’s

* Prof. Schmidhuber invented "Long short-term memory” — Recurrent

NN (LSTM-RNN) model in 1997

® &

|
® ® ® ® ® =
TR -

I |
&) ® &)

@ @ @ @ @ The repeating module in an LSTM contains four interacting

Sepp Hochreiter; Jirgen Schmidhuber (1997). "Long short-term memory".

8/29/18 Yanjun Qi / UVA CS

layers.

Neural Computation. 9 (8): 1735-1780.
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Between ~2000 to ~2011
Machine Learning Field Interest

* Learning with Structures ! + Convex Formulation!
* Kernel learning
* Manifold Learning
* Sparse Learning
 Structured input-output learning ...
* Graphical model
* Transfer Learning
* Semi-supervised
* Matrix factorization




“Winter of Neural Networks” Since 90’s to ~2011

* Non-convex

* Need a lot of tricks to play with
* How many layers ?
* How many hidden units per layer ?
* What topologyamong layers ? .......

* Hard to perform theoretical analysis



Breakthrough 1n 2012 Large-Scale

Visual Recognition Challenge (ImageNet) :
Milestones in Recent Vision/Al Fields

Top-5 Error Rate

2012 2013 2014
0.153 0.112 0.067

Image AlexNet started Image
Class

ification

the Deep Learning era. Classification
Ended

2011 2013 2006 ..

2013, Google Acquired Deep Neural Networks Company headed by Utoronto “Deep Learning”
Professor Hinton

2013, Facebook Built New Artificial Intelligence Lab headed by NYU “Deep Learning” Professor LeCun
2016, Google's DeepMind defeats legendary Go player Lee Se-dol in historic victory / 2017 Alpha Zero

8/29/18 Yanjun Qi / UVA CS 54




Reason: Plenty of (Labeled) Data

8/29/18

 Text: trillions of words of English + other languages

 Visual: billionsof images and videos

Audio: thousands of hours of speech per day

User activity: queries, user page clicks, map requests, etc,

Knowledge graph: billionsof labeled relational triplets

Yanjun Qi / UVA CS

Dr. Jeff Dean’s talk
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Reason: Advanced Computer Architecture
that fits DNNs

GPU Accelerator
CPU Optimized for

Optimized for Parallel Tasks

Serial Tasks Neural

Networks

Inherently
Parallel v

EEEEEEE SREEEEEEE
EENEEEEN DEEEEEEE
IEEEEEER EEEEEEEE
IENEENEN PEEEEEEm
IEEEEEED DEEEEEEE
GEEEEEER REEEEEEE
EENEEEEN DEEEEEEm
DEEEEEER EEEEEEEE

Matrix
Operations v

FLOPS v

GPUs deliver --
http://www.nvidia.com/content/events/geoint2015/LBrown_DL.pdf - same or better prediction accuracy
- faster results
- smaller footprint
- lower power




Some Recent Trends https://qdata.github.io/deep2Read/

. Autoencoder/ layer-wise training
. CNN / Residual / Dynamic parameter
. RNN / Attention / Seq2Seq, ...
. Neural Architecture with explicitMemory
. NTM 4program induction / sequential decisions
. Learning to optimize / Learning DNN architectures
. Learning to learn / meta-learning/ few-shots
. DNN on graphs / trees / sets
. Deep Generative models, e.g., autoregressive
10. Generative Adversarial Networks (GAN)
11. Deep reinforcement learning
12. Validate / Evade / Test / Understand / Verify DNNs

o0 NOULL B WDN PR



ReCa p https://qdata.github.io/deep2Read/

Inputs and Outputs
Losses

>

S

Architectures:
Learned Models

8/29/18 Yanjun Qi / UVA CS 58
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Making Deep Learning Understandable
for Analyzing Sequential Data about Gene
%egU‘athﬂ Dr. Yanjun Qi

Departmentof Computer Science

University of Virginia

Tutorial @ ACM BCB-2018

BREAK 5mins ->Second Half



State-of-the-art: Deep Neural Networks (DNNs)

Can get overly sentimental at times, but
Gus Van Sant's sensitive direction... and
his excellent use of the city make it a
hugely entertaining and effective film.

Full Review... | May 25, 2006

4

ATG GAT AAGTCTG ——

8/29/18
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- ”Dog

”

— O

— “Protein-bindingSite”

60



Challenge : DNNs are hard to Interpret

30%

25%

20%

15%

10%

5%

0%

2010
8/29/18

ImageNet Error Rate

¢

Sy,
/)
9
o/
@@0
/@ 5

7N .

27

N

eeeee

Y= (6 (6 (F, 00))

Yanjun Qi / UVA CS
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Our Goal: Interpretable DNNs

| I é

>

O

© ’

3

o

o

<
Challenge : DNNs are Linear Regression
hard to Interpret >

Interpretability

8/29/18 Yanjun Qi / UVA CS
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Today

* Machine Learning: a quick review

* Deep Learning: a quick review https://qdata.github.io/deep2Read/
» * Background Biology: a quick review

* Deep Learning for analyzing Sequential Data about Regulation:
 DeepChrome
e AttentiveChrome

* DeepMotif https://www.deepchrome.org

8/29/18 Yanjun Qi / UVA CS 63



Biology in a Slide

~

-

Transcription

ORGANISM

-
-
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O
=
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Z
o
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DNA

. e o o - - - - — - —————— =

e - - ————
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DNA and Diseases

8/29/18

Down Syndrome
Parkinson’s Disease
Autism

Muscular Atrophy

Sickle Cell Disease

Yanjun Qi / UVA CS
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Chromatin

/\
DNA

chromatin \ /
TFs

8/29/18

histone

Epigenetics
“Environment
of the DNA”

rjun Qi / UVA CS

N

Control

4

-

\_

Gene

Transcription

/

v

?
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Histone Proteins CELL

istone
QVO’«',W\

8/29/18 Yanjun Qi / UVA CS
Image:https://www.khanacademy.org/science/biology/cellular-molecular-biology/intro-to-cell-division/a/dna-and-chromosomes-article
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Transcription Factor Binding => Gene Transcription

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Gene

Transcription Factors

e — | )

ATCGCGTAGCTAGGGATGACAGACACACATAATGT

Gene

DNA

8/29/18
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Histone Modifications (HM)

Histone

8/29/18 Yanjun Qi / UVA CS 69



Genome Organization and Gene Regulation

- H i :
Sassssssssssssssssssssssssssssssssesssamsessssaee e = = e = = = e = R S = R e eSS SRR S eSS EEESE AR ENR NS RNANENEEESSERRNNSSRRSERRRssRRRRSRRRRERnnnE
. . -

Level 1

Regulatory Elements

Level 2

Chromatin Structure

Genes
Promoters
Enhancers

Histone Modifications
DNA methylation
Chromatin remodeling

.

Level 3

Nuclear Architecture

8/29/18

> < Cellular Phenotype

Chromosomal organization
Long range interactions

><

Yanjun Qi / UVA CS
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.
--------------------------------------- .|---------'_\-------------------------------------------.----------------------E------

Level 1 : Level 2

Regulatory Elements Chromatin Structure
Genes Histone Modifications
Promoters DNA methylation
Enhancers Chromatin remodeling

ENCODE Project (2003-Present)

Describe the functional elements encoded in human DNA

DECODING
THEBLUEPRINT Yanjun Qi / UVA CS

Pmangaromefuncion [T



Level 2

Regulatory Elements

Chromatin Structure
Genes Histone Modifications
Promoters DNA methylation
Enhancers Chromatin remodeling

ENCODE Project (2003-)

Describe the functional elements encoded in human DNA

Roadmap Epigenetics Project (REMC, 2008-)

To produce a public resource of epigenomic maps for stem
cells and primary ex vivo tissues selected to represent the
normal counterparts of tissues and organ systems
frequently involved in human disease.

Nature
February 18, 2015

nature
<>

DECODING = ==
THEBLUEPRINT Yanjun Qi /UVACS

The ENCODE pilot maps — Integrative analysis of 111 reference
human genome function lm'u ml ||”

human epigenomes (Abstract)




Many Important Data-Driven Computational Tasks

< ™
- ~ TF Binding
DNA 5 Signals ) - ~
Segments j> y . j> Gene
on Expression
KGenomes/ 4 Histone A ~ -
Modification
ATGCGATCAAGTCTG S |S
. IgNna y




Sequential Input (X)

~ ATCGATCTCTAGATCTCTG. .

LA
EXES

Strings, signals etc.

8/29/18 Yanjun Qi / UVA CS
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Sequential Input (X)

~ ATCGATCTCTAGATCTCTG. .

LA e

Strings, signals etc.

EEER
This Food is not good. —) W —) NO

-1
8/29/18 I Yanjun Qi / UVA CS [ (J v S_-;\ (/:) )




Many Important Data-Driven Computational Tasks
/

-

.

DNA

on

Genomes

~

Segments

/

ATGCGATCAAGTCTG

8/29/18

-

.

TF Binding
Signals

A

~

/

-

o

Histone
Modification
Signals

~

%

-

First Task

N

-

.

Gene
EXxpression

790
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Histone Modification and Gene Transcription

Transcription Factor

(TF)
\

T Gene Transcription

Histone Modification
(HM)




Histone Modification and Gene Transcription

Transcription Factor

(TF)
\

T Gene Transcription

Histone Modification | .-
(HM) ?




Histone Modification and Gene Transcription

8/29/18

Transcription Factor
(TF)

|

Histone Modification
(HM)

Yanjun Qi / UVA CS

Gene Transcription

? [HW

c——
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Why Studying [HM => Gene Expression] ?

* Epigenomics:
e Study of chemical changes in DNA and histones (without altering DNA sequence)

* Inheritable and involvedin regulating gene expression, development, tissue
differentiation and suppression ...

* Modification in DNA/histones (changes in chromatin structure and function)
e =>influence how easily DNA can be accessed by TF

* Epigenome is dynamic
e Can be altered by environmental conditions

* Unlike genetic mutations, chromatin changes such as histone modifications are
potentially reversible => Epigenome Drug for Cancer Cells?



Study how HMs influence genes?

%)
@
OFF

(%)

~56 Cell Types

N

A Gene A

) %)
@ @
OFF OFF
(%) Q@

7 7}
OFF OFF
) o 2

/\ Gene B

Y

HM1 HM2 HM3

8/29/18

HM1 HM2 HM3

K~20 HMs
G~30,000 Genes

Yanjun Qi / UVA CS
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Task Formulation

Gene
Expression

8/29/18 Yanjun Qi / UVA CS 82



Input

Transcription Start Site

HM1

HM2

HM3

HM4

HM5

Bin#

100

100

83
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HM1 —— Q
)
Gene
HM2  —SNa Expression
° K=5 HMs
T e R B =100 Bins
HM3  ———— Search Space= 2(B+K)
T Gene 2(100+5) ~ 4 x 1031

? 2 ?



Related Work

HM1

DNA

- 9 ¢

/l =\ Gene
Expression

HM2

DNA : :
Gene Linear Regression

SVMs
Random Forests

HM?3 —
DNA Gene

[1] Karli'c, R. et al, Histone modification levels are predictive for gene expression. Proceedings of the National Academy of Sciences (2010)
[2] Cheng, C. e%/%,g/gtsstatistical framework for modeling gene expression using chromatin fe ?Wé@a@tbl/agyﬁ\tgﬁon to modENCODE datasets. Genome Biology (2011)
[3] Dong, X. et al, Modeling gene expression using chromatin features in various cellular contexts. Genome Biology (2012)
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Drawback of Related Works

?

Linear Regression,
SVM,
Random Forest

Gene Expression On/Off

[1] Karli‘c, R. et aIQHistone modification levels are predictive for gene expression. Proceedings of the National Academy of Sciences (2010)
[2] Cheng, C. etgall, Sa\(}éxtistical framework for modeling gene expression using chromatin featu r@%agbl/iéﬁyéﬁo modENCODE datasets. Genome Biology (2011)
[3] Dong, X. et al, Modeling gene expression using chromatin features in various cellular contexts. Genome Biology (2012)
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HM signals occupy a local region
and look similar in different parts?

First Solution : CNN

Output

» Park

input layer

hidden layer 1  hidden layer 2

Gene

5
el
O
i
o;o;o

X
O

X
O

'v’ ‘,
/ output layer

hidden layer 1 hidden layer 2

input layer

Yanjun Qi / UVA CS




First Solution: DeepChrome : CNN

m) DeepChrome

J
3

AW
RON
e

@

H M k /\ Fipubiaysr
hidden la

R. Singh,8é2t9élﬁ ”Deep-learning for predicting gene expressiYSWuf“rg%U istone modifications”. Bioinformatics. (ECCB) (2016) °



Gene

DNA

Gene

DNA

Gene

DNA

3

HM

HM2

HM1



O

-ognn
\

Gene Expression Y
(RPKM) Labels
RUNX1 1.296 0 9,
[
SMAD?2 14.902 1 @
MYC 3.805 0 Q
PAX5 15.066 1 @

Threshold = 10.245 (Median)




DeepChrome: Convolutional Neural Network (CNN)

HM1

HM2

HM3
HM4
HM5 7

X 1. Convolution

8/29/18 Yanjun Qi / UVA CS 91



DeepChrome: Convolutional Neural Network (CNN)

_ - o B ]
Ve _-/ =17 . 5. Softmax
HM?2 // \\ '\
A e
HM5 ’ — Y=1/-1

« | 4, Multi-layer |
1. Convolution 2. Max 3. Dropout Pperceptron
Pooling @ Q

N omp
E= Z loss(f(X'™),y'"™)
n=1

8/29/18 Yanjun Qi / UVA CS 92




DeepChrome: Convolutional Neural Network (CNN)

HM1

HM2

HM3 - (— S Hh E(5)

HM4
HM5 oY

Back-propagation: @« ®-— ng_g

8/29/18 Yanjun Qi / UVA CS 93



Experimental Setup

 Roadmap Epigenetics Project (REMC)
e Cell-types: 56
 Input (HM): ChIP-Seq Maps /5 Tier-1 HMs

H3K27me3 Repressor
H3K36me3 Structural Promoter
H3K4mel Distal Promoter
H3K4me3 Promoter

H3K9me3 Repressor

e Output (Gene Expression): Discretized RNA-Seq
» Baselines: Support Vector Classifier (SVC) and Random Forest Classifier (RFC)

Training Set Validation Set Test Set
6601 Genes 6601, Genes 6600 Genes




Results:

8/29/18

Accuracy

0.95
0.9
0.85

o
o

AUC Score
(@)
©
~ (@) ]

0.65
0.6
0.55
0.5

56 Cell-types

——DeepChrome —=-SVC —RFC

Yanjun Qi / UVA CS
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https://www.deepchrome.org

Summary of tools

A
Accurate ‘
DeepChrome ‘
hard to
Interpret

| » Understandable

R. Singh/et al. Deep-learning for predicting gene expressionifrom Histone modifications”. Bioinformatics. (2016) %




Solution: Interpretability by Hierarchical Attention

Input Output

Attention
Mechanism

A\
O

“4

Va
X
N
X
‘§

e
;‘;

‘
1 1 1 1
: : : E E : ;g) nput layer ‘ . e
H M 2 : : : : R 5/ hidden layer 1 hidden layer 2 -
AR \we2
1 1 1 'a A\)
Yanjun Qi / UVA CS 97
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Solution: Interpretability by Hierarchical Attention

Input Output

Mechanism <>

\' Gene
(1) What posmons are important?

=) N\
‘ (2) What HMs are |mportant?

'
%E Yanjun Qi / UVA CS

98
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Attentive
N §

Chrome @ @

L
.A\
input layer
H M k /_\ hidden layer 1 hidden layer 2

R. Singh,gé%géjlf3 “Attend and Predict: Understanding Gene Réagnﬁjlna%c/)ﬁvﬁnCISSelective Attention on Chromatin”. NIPS (2017)
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HM-Level
Attention

AttentiveChrome

|- —| - .

(2) What HMs are important?

Bin-Level
Attention

Gene
Expression

-

[NIPS 2017]



Multiple Recurrent Neural Networks (Hierarchical RNNs)

to model each HM and the Combination of all HMs : for example on HM1

HM1

.

8/29/18

Yanjun Qi / UVA CS
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OO0 . .
1Sioi0) Attention Mechanism
OO

A~V

Attention weights per gene \

Softmax T
, SRR B AR
W
—— ———C — /Context
T Vector
% —%. —> ——>-§ —>
"B \ AT
HM.1 ny T~
JHI‘!Il / .




Using Attention to Select RNN per-unit outputs

I I ] exp(Wph
A — — A — — A a'_z — T p( b ) 3
6 & © o ¢ = Crp by
(X9 (X9
hs|= | fwi (R} 2) W, is learned
new state / old state input vector at
some time step
some function
with parameters W
8/29/18 Yanjun Qi / UVA CS 103
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Prediction
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Bin-Level Visualization

ceLL Tvpe: a1l (1) What positions are important?

Repressors Promoters
1 A 1 f | \
— H3K27me3 H3K9me3 H3K4dmel -H3K4me3 H3K36me3
< |
S z
2 I
&0 o | <
08 o i‘:b
. £
() o
g < % -+
<o E
cbo é =]
Zo 5
o l Ll L 1 1 < g —
8/29/18 0 20 40. 60 80 100 Yanjun Qi / UVAES 6 ZIO 40 éO éO IIOO 105
Bins (t) Bins (1)




Cell Types:

HM-Level Visualization

(2) What HMs are important?

PROMOTER
DISTAL PROMOTER
REPRESSOR

Gene: PAX5

H3K27me3

H3K36me3

H3K4mel

H3K4me3

H3K9me3

(Stem Cell) (Blood Cell)

L]l

?

Yanj@/ UVA CS

(Leukemia)

[

Y

Color Scale
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Results: HM level attention

Gene: PAXS
[l

0o 1

Gene =QFF ON OFF

—) Hrepra
Hstruct
Henhe
=

I_Iprom

HreprB

K562

o oo
v U=
= S
T S
B M

aps

» An important differentially regulated
gene (PAX5) across three blood
lineage cell types:

»H1-hESC (stem cell),
»GM12878 (blood cell),
» K562 (leukemia cell).

» Trend of its global weights (beta)
Verified through the literature.

(2) What HMs are important?




Validation of Attention Weights (using one extra HM signals )

Table 3: Pearson Correlation values between weights assigned for H,,.,, (active HM) by different
visualization techniques and H ;.. r€ad coverage (indicating actual activity near "ON" genes) for
predicted "ON" genes across three major cell types.

Viz. Methods H1-hESC GM12878 K562

a Map (LSTM-«) 0.8523 0.8827 0.9147
a Map (LSTM-q, 3) 0.8995 0.8456 0.9027
Class-based Optimization (CNN) 0.0562 0.1741 0.1116
Saliency Map (CNN) 0.1822 -0.1421 0.2238

» Additional signal - H3K27ac (H-Active) from REMC
» Average local attention weights of gene=ON correspond well with H-active
» Indicating AttentiveChrome is focusing on the correct bin positions

8/29/18 Yanjun Qi / UVA CS 108



https://www.deepchrome.org

Summary of tools

A

Accurate ‘

DeepChrome ‘ ‘AttentiveChrome

» Understandable

R. Singh,Sé%gé]I? “Attend and Predict: Understanding Gene Réaé]m%%é)%v@)f/SSelective Attention on Chromatin”. NIPS (2017) 7




Where are we heading?

Changing Task : Classification > Regression

1.770

Gene
Expression

8/29/18

Gene Expression Y
(RPKM) log(RPKM)

Mean Square Error

SMAD2 14.902 1.1737 LOSS
MYC 3.805 0.5803
(Y - (X))
PAX5 15.066 1.779

Yanjun Qi / UVA CS
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Where are we heading?

J
‘ Changing Task : Classification >Regression
0.3
095 ‘ Correlation (Predicted Value, True Value) ‘
g
= 0.2
5 K
g % 0.15
O g
SEZ 01
A
.= <=
02, [HHTITTITITS
5 O
5 A
& -0.05
A
-0.1
-0.15

8/29/18

56'CEll Types
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Where are we heading?

DeepDiff: Deep-learning for predicting Differential gene expression from histone modifications

XA - XB, [XA,XE]

A 4

Changing Task : Cell-Specific = Cross Cell

XA

XB

Main Task Auxiliary-Task-A Auxiliary-Task-B
Level | Level I Level
Embedding Embedding Embedding
Main Task Auxiliary-Task-A Auxiliary-Task-B
Level II Level I1 Level I
Embedding Embedding Embedding
Main Task o
iliary- 5 Auxiliary-Task-B
Differential Auxiliary-Task-A uxiliary-Tas

Prediction

Prediction A

Prediction-B

— @ Main Task: Differential gene expression prediction

@ Cell-Specific Auxiliary: Auxiliary-Task-A and Auxiliary-Task-B

cell type specific prediction

DeepDiff Variations

Objective Loss

@ Raw:d, Raw:c, Raw

@ Aux
@ + @ Raw+Aux
@ + @ Aux+Siamese
@ +@ +@ Raw+Aux+Siamese

Ibifr
Loirtt cellaux
o™ Cellaux
’EDiff—i_f CellAux-I_'e Siamese

eDiff_i_‘g CellAux—}_e Siamese




Where are

we heading?

DeepDiff: Deep-learning for predicting Differential gene expression from histone modifications

‘ Changing Task : Cell-Specific = Cross Cell

Transcri gnon Start

Bin# 1 2 3 4. 200

HM1
HM2

HM3

HM4

HMS5

Raw Input Matrix for Gene X in Cell-type A: XA

Bin# 1 2 3 4. 200

|
Histone Modifications

HM1

HM2

HM3

HM4

Slte SS)—> o -
HMl 1 1 1 : : H ! M |
i i i i i i i 1 Gene X
HM2__ | i .
i : E oo v 1 GeneX
IVE V2 S . ——
R T oo | 1 Gene X
HM4 4+ | I S
E i ll i ll | i : 1 ':GeneX
HMs L L | g *
B S S SR TR N 3 (2 . | tiodoobp 1 GemeX B
Bin# | 2 3 4. <> 200 -

Epigenetic Features for Gene X in Cell A/B

(a)

8/29/18

HMS5

Raw Input Matrix for Gene X in Cell-type B: XB

Yanjun Qi / UVA CS

(b)

Bin #

1 2 3 4.

200

Dift-HM1

Diff-HM2

Dift-HM3

BT

Diff-HM4

Dift-HM5

Bin #
HM1
HM2
HM3
HM4
HMS5
HM1
HM2
HM3
HM4
HMS

Raw Difference Matrix for Gene X: XA

1 2 3 4.

200

=

-XB

Raw Concat Matrix for Gene X: [XA, XB]

113

Cell type A

Cell type B



Today

* Machine Learning: a quick review

* Deep Learning: a quick review https://qdata.github.io/deep2Read/
* Background Biology: a quick review

* Deep Learning for analyzing Sequential Data about Regulation:
 DeepChrome
e AttentiveChrome

» * DeepMotif https://www.deepchrome.org

8/29/18 Yanjun Qi / UVA CS 114



Many Important Data-Driven Computational Tasks
/

-

.

\

Second
Task

DNA

Segments

on

Genomes

/

ATGCGATCAAGTCTG

8/29/18
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TF Binding
Signals

y N

~
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>
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o

Histone
Modification
Signals
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%

-

.

Gene
EXxpression
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Transcription Factors

?

Gene
Expression

8/29/18 116



TF-Binding Site?

QTF

? ?

“TF-Binding Site?”
ATCGAATCCG

CCCTCTATCG 0

8/29/18 Yanjun Qi / UVA CS 117




Task: Sequence Based Functional Annotation Tasks

DOOOT

TF1 TF2 TF3 TF1 TF2 TF1 TF3 TF2

...GCGA?GAATCG...AACGA*ATGCT...CATAQCA?TTC...TGT&AG...CTCG’AGTC...TATCQAGC?G...

118




Literature: Various DNN Tools -
Probability of

Input Sequence Binding Site
A
_‘
% E - ~ B - o o
1. Convolutional (CNN) 2 3 : e
'é 3
A
g — —_— — @ TFBS
2. Recurrent (RNN) 2 ; : Wl
3. Convolutional- .
M
Recurrent (CNN'RNN) g o —_ —» @-TFBS
M P z — @—NON-TFBS
& = 2
DeepSEA, DeepBind, BASSET, DanQ, ... 119



Deep Motif Dashboard: Understand DNNs by Post Analysis

Lanchantin, Singh, Wang & Qi - Pacific Symposium on Biocomputing, 2017

CNN Positive Class Maximization ,c-.éT;Iéé;,
lass Maximization 'H:» 1r.couTTRSSCE. e J—
Positive Class Maximization ,,ﬁTc, . o & 9.9.040.0.0. 0aSaSneneneesemmaneliiitootaten] ..-cév:L . TC.TC;L. I
Positive Test Sequence COAAGANGOAGHCTCAGCACCAGETONGEC:CACCTCAGLCEC:006CLCTECETCCOQTCACATAACTCHECTETECCACETLCE
NN cy (0.90) I
NN Saliency (0.96) 11
NN Saliency (0.99) .I
Positive Test Se quence COMANA TN A TOAGECAETOAGCCCCRo000 o000 A TAA T TETeC e
Forward Temporal Outputs u l - ——
ackward Temporal Outputs | |
Forward Temporal Outputs I | ?
ackward Temporal Outputs

1. Saliency Maps - recommending on CNN kind
2. Temporal Output Values - recommending on RNN kind

3. Class Optimization - recommending on CNN kind

Yanjun Qi / UVA CS 120

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi



1. Saliency Map

S,

—» positive binding site

OO\
- H@M«, (AN

ACTTGCAG —» 0 ,,‘ *;::\ "’
W"‘N"‘H/

Which nucleotides are most important for my current-sample classification?

121

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi



1. Saliency Map

S,

—» positive binding site

O
ACTTGCAG — XK

O ‘ ‘
AN
«’)7 \\’;wv
,«* 5;“\9 a
N ﬁ/ \V/
05,

w = = “saliency map”

8X

Quiz: What is gradient?

Deep Inside Convolutional Networks: Visualising Image
Classification Models and Saliency Maps, ICLR 2013

122

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi



1. Saliency Map

X Ny
o OO
This movie has one of the —» OXb W\
OO

best plots | have seen ORI
RS

This movie has one of the best plots I have seen
I = important for classification
123

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi



1. Saliency Map

S,

—» positive binding site

OO\
- H@M«, (AN

ACTTGCAG —» 0 ,,‘ *;::\ "’
W"‘N"‘H/

Positive Test Sequence TGCTCGCATCCTATTGCCCACGTTAGTCACATGGCCCCACCTCGGCTGCAAAGCACECTCEGAAACCTAGTCTTTCTT

Saliency Map l I

I = important nucleotide for prediction

124
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2. Temporal Output Values

“A\'A“A\'IN\‘ positive binding site

ACTTGCAG —» 0 A *;::{

KRS/

What are the model’s predictions at each timestep of the DNA sequence?

125

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi



2. Temporal Output Values

ACTTGCAG

Check the RNN’s prediction scores when we vary the mput of
the RNN starting from the beginning to the end of'a sequence.

126

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi



2. Temporal Output Values

A

positive sentiment

X

| don’t like the actors, but | really enjoyed this movie

don’t like actors, I really enjoyed this movie

I = negative sentiment I = positive sentiment
127

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi



2. Temporal Output Values

X
ACTTGCAG

\\’)

- ‘)(“5;0‘; v&\\
PGS

Positive Test Sequence

CTTCTCCTCCCATCCTATTCCCCACCTTACTCACATCCCCCCACCTCCCTCCAAACCACCCTCCCARACETACTCTTTCTT

RNN Forward Output

RNN Backward Output

I = negative binding site prediction I = positive binding site prediction

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi
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3. Class Optimization

H«,H«,H\

P Y 4\ IW \W ‘V. <4— positive binding site for TF “CBX3”

For a particular TF, what does the optimal binding site sequence look like?

129

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi



3. Class Optimization

N v‘ W ‘

WX
PNV YN

OO

RS

() «— positive binding site for TF “CBX3”

arg max S (X)) + M XI5

Where X 1s the imnput sequence and the score S, 1s probability of
sequence X being a positive binding site

Deep Inside Convolutional Networks: Visualising Image
Classification Models and Saliency Maps, ICLR 2013
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3. Class Optimization

() «— positive binding site for TF “CBX3”

\\’»7 ‘V/
m m /A

A W"‘W"‘N

Optimal binding
site for TF “CBX3” e . cl I ISz AGT .

131

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi



Visualization Methods

(

1. Saliency Maps — (CNN kind)
. 2. Temporal Output Values — (RNN kind)

(

TF Specific 1 3. Class Optimization — (CNN kind)

Sequence <
Specific

code available at: deepmotif.org

8/29/18 Yanjun Qi / UVA CS 132

DeMo Dashboard - Lanchantin, Singh, Wang, & Qi University of Virginia



Related Work to Post-Understand DNN

* Deconvolution

e Perturbation-based

* Backpropagation-based

e Difference to Reference

* Influence based

Temporal Output Values

Saliency Map

Class Optimization

DeeplLift

Influential Function / ICML27 Best Paper

\4.“«(4%{
X




https://www.deepchrome.org

Summary of tools

4

Accurate ‘ DeepMotif

A

DeepChrome ‘ ‘AttentiveChrome

» Understandable

8/29/18 Yanjun Qi / UVA CS 134



https://www.deepchrome.org

Recap

A

Accurate ‘

DeepChrome ‘

» Understandable

8/29/18 Yanjun Qi / UVA CS 135




https://www.deepchrome.org

Recap

A

Accurate ‘

DeepChrome ‘ ‘AttentiveChrome

» Understandable

8/29/18 Yanjun Qi / UVA CS 136




Recap

A
Accurate ’ DeepMotif

DeepChrome ‘ ‘AttentiveChrome

» Understandable

8/29/18 Yanjun Qi / UVA CS 137




Recap

A
Accurate ’ Deepl\/lotif> @:

DeepChrome ‘ ‘AttentiveChrome ‘

» Understandable
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More Tools: A Fast and Scalable
Tool to Classify Biological
Sequences

https://github.com/QData/iGakco-SVM




String Kernel + SVM

String Kernel

Function K(.)
lI
/ T
...> ® O O
< d

S=TCGAATCCG
T=GCTGAATCG

P,
! 4 j > \{\
- | T=KKHAVQQVV
A r

S=QGGHAKKQQ

8/29/18

ol

Support Vector Machine

K(S,T)=@(S). @(T)

Yanjun Qi / UVA CS

\ (SVM) /
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Our Tool Scales well with increasing > and m

gkm-SVM : > 5 hrs
GaKCo : 4 mins

B
o
o

ha
o,

Kernel Calculation Time (log sec
- o
S o D o P o

w

Kernel Calculation Time (log seconds)

2.5
|
1 |
1.5¥ I
1 ; ; ; ! : \ | 0.5 |
1 2 3 4 5 6 7 8 9 T2 3 4 5 6 7 8 9
M= (g-k) M= (g-k)
(a) DNA (EP300) (b) Protein (1.34)
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More Tools: Extracting
graphs from data

https://www.jointggm.org




Motivation: Graphs vary across contexts

Normal Lung
Tissue .

- Tiss”e- . Contexl Contex2 Context i Context K

Normal Liver \,
Tissue Lung

Normal Stomach

Normal Colon -
/ Adipose tissue - 1 ‘ > - } ‘ - ~ I ‘ -
Prostate Cancer NS . N N

Normal Skin 7~ &) b B A
} 477 Y N ) .
. ( A7,/ \. 1/ S LR L . M eeese
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Limitation of Previous Methods : Storage

e.g., calculate the gradient

L=Cov(X)=

E=Cov(X)=

T=Cov(X)=

8/29/18

O Oz Oln
Gy Ox O 2
L Grzl Gn2 Grm
O Oy Oln
Oz Oz O 2
L Gnl Gn2 sz
O Oy Oln
Oz Oz O 2
L Gnl Gn2 sz

When K contexts=91, p nodes= 30K

O(Kp?) in memory

Double type: 65 TB
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Limitation of Previous Methods: Speed

Suppose they have the same iteration number

Traditional Optimization Method
---- Block Coordinate Descent : O(K°p*)/ Itera
N

K =91, p= 30K

more than 2 billion years

Current Optimization: ADMM based
---- Still needs SVD for each covariance matrix

SVD for the matrices needs O(KPB) — 3.5 days
/ Itera



Our Tools

e Fast and scalable estimators for joint graph discovery
from heterogeneous samples

* Parallelizable algorithms

* Sharp convergence rate (sharp error bounds)

More details at: http://www.jointggm.org/
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