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Today

• Machine	Learning:	a	quick	review	
• Deep	Learning:	a	quick	review	
• Background	Biology:	a	quick	review	
• Deep	Learning	for	analyzing	Sequential	Data	about	Regulation:	

• DeepChrome
• AttentiveChrome
• DeepMotif

8/29/18 2

https://www.deepchrome.org

https://qdata.github.io/deep2Read/
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• Biomedicine
• Patient records, brain imaging, MRI & CT scans, …
• Genomic sequences, bio-structure, drug effect info, … 

• Science
• Historical documents, scanned books, databases from 

astronomy, environmental data, climate records, …

• Social media
• Social interactions data, twitter, facebook records, online 

reviews, …

• Business
• Stock market transactions, corporate sales, airline traffic, 

…

OUR DATA-RICH WORLD



Challenge of Data Explosion in Biomedicine

Molecular signatures of
tumor / blood sample

Signs &
Symptoms

Genetic Data

Public Health
Data

Patient Medical
History &
Demographics

Medical Images

Mobile medical
sensor data

Traditional
Approaches

Data-Driven
Approaches

Machine
Learning
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BASICS OF MACHINE LEARNING

• “The goal of machine learning is to build 
computer systems that can learn and adapt 
from their experience.” – Tom Dietterich

• “Experience” in the form of available data
examples (also called as instances, samples)

• Available examples are described with 
properties (data points in feature space X)
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e.g. SUPERVISED LEARNING
• Find function to map input space  X  to output 

space Y 

• So that the difference between y and f(x) of 
each example x is small.

I	believe	that	this	book	is	
not	at	all	helpful	since	it	
does	not	explain	thoroughly	
the	material	.	it	just	provides	
the	reader	with	tables	and	
calculations	that	sometimes	
are	not	easily	understood	…

x

y
-1

Input	X	:	e.g.	a	piece	of	English	text	

Output	Y:				{1	/	Yes	,		-1	/	No	}	
e.g.	Is	this	a	positive	product	 review	?

e.g.	



SUPERVISED Linear Binary Classifier

• Now	let	us	check	out	a	VERY	SIMPLE	case	of	
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e.g.:	Binary	y /	Linear	f	/	X	as	R2

f x y

f(x,w,b) = sign(wT x + b)

X =(x_1,	x_2)



SUPERVISED Linear Binary Classifier

f x y

f(x,w,b) = sign(wT x + b)

wT x +	b<0

Courtesy	slide	from	Prof.	Andrew	Moore’s	tutorial

?

?

wTx +	b>0

denotes +1 point
denotes -1 point
denotes future 
points

?
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X =(x_1,	x_2)

x_1

X_2
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• Training (i.e. learning parameters w,b ) 
• Training set includes 

• available examples' feature represenation: x1,…,xL
• available corresponding labels y1,…,yL

• Find (w,b) by minimizing loss (i.e. 
difference between y and f(x) on available 
examples in training set)  

(W, b) = argmin

W, b

Basic Concepts 



• Testing (i.e. evaluating performance on “future”
points)

• Difference between true y? and the predicted  f(x?) on a set 
of  testing examples (i.e. testing set)

• Key: example x? not in the training set

• Generalisation:	learn	function	/	hypothesis	from	
past	data	in	order	to	“explain”,	“predict”,	“model”	or	
“control”	new data	examples	

8/29/18

Basic Concepts 

Yanjun	Qi	/	UVA	CS	 10



8/29/18 Yanjun	Qi	/	UVA	CS	 11

• Loss function 
• e.g. hinge loss for binary 

classification task

• Regularization 
• E.g. additional information added
on loss function to control f

Basic Concepts 

Maximize	Separation	Margin	=>	Minimize



Basics of Machine Learning

Input: X Output: Y
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Basics of Machine Learning

Input: X
Output: Y

Training

f(X)

f(X)=Y
138/29/18 Yanjun	Qi	/	UVA	CS	



Basics of Machine Learning

Input: X’
Testing

f(X’)

Supervised
Classification
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TYPICAL MACHINE LEARNING SYSTEM 

8/29/18

Low-level 
sensing

Pre-
processing

Feature 
Extract

Feature 
Select

Inference, 
Prediction,  
Recognition

Label 
Collection
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Evaluation



TYPICAL MACHINE LEARNING SYSTEM 

8/29/18

Low-level 
sensing

Pre-
processing

Feature 
Extract

Feature 
Select

Inference, 
Prediction,  
Recognition

Label 
Collection

Data 
Complexity in X

Data 
Complexity 

in Y

Yanjun	Qi	/	UVA	CS	 16

Evaluation



UNSUPERVISED LEARNING : 
[ COMPLEXITY OF Y ]

• No labels are provided (e.g. No Y provided)
• Find patterns from unlabeled data, e.g. clustering 

8/29/18

e.g.	clustering	=>	to	find	
“natural” grouping	of	
instances	given	un-labeled	
data

Yanjun	Qi	/	UVA	CS	 17



Structured Output Prediction: 
[ COMPLEXITY in Y ]

• Many prediction tasks involve output labels having 
structured  correlations or constraints among instances

8/29/18

Many	more	possible	 	structures	between	y_i ,	e.g.	spatial	,	temporal,	 	relational	…

The	dog	chased	
the	cat

APAFSVSPASGACGPECA…

TreeSequence Grid
Structured Dependency 
between Examples’ Y 

Input

Output

CCEEEEECCCCCHHHCCC…

Yanjun	Qi	/	UVA	CS	 18



Original Space Feature Space

Structured Input: Kernel Methods 
[ COMPLEXITY OF X ]

Vector	vs.	Relational	data

e.g.	Graphs,
Sequences,
3D	structures,

8/29/18 Yanjun	Qi	/	UVA	CS	 19
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More Recent: Representation Learning
[ COMPLEXITY OF X ]

Deep Learning Supervised Embedding

8/29/18

Layer-wise Pretraining

Yanjun	Qi	/	UVA	CS	 20



Why	learn	features?

21



When	to	use	Machine	Learning	?	

• 1.	Extract	knowledge	from	data
• Relationships	and	correlations	can	be	hidden	within	large	amounts	of	data
• The	amount	of	knowledge	available	about	certain	tasks	is	simply	too	large	
for	explicit	encoding	(e.g.	rules)	by	humans	

• 2.	Learn	tasks	that	are	difficult	to	formalise
• Hard to	define	well,	except	by	examples	(e.g.	face	recognition)

• 3.	Create	software	that	improves	over	time
• New	knowledge	is	constantly	being	discovered.	
• Rule	or	human	encoding-based	system	is	difficult	to	continuously	re-design	
“by	hand”.

228/29/18 Yanjun	Qi	/	UVA	CS	



Recap	

•Goal	of	Machine	Learning:	
Generalisation

• Training	
• Testing
• Loss	

8/29/18 23Yanjun	Qi	/	UVA	CS	



Today

• Machine	Learning:	a	quick	review	
• Deep	Learning:	a	quick	review	
• Background	Biology:	a	quick	review	
• Deep	Learning	for	analyzing	Sequential	Data	about	Regulation:	

• DeepChrome
• AttentiveChrome
• DeepMotif

8/29/18 24

https://www.deepchrome.org

https://qdata.github.io/deep2Read/

Yanjun	Qi	/	UVA	CS	



• Deep	Learning		
• Why	is	this	a	breakthrough	?	
• Basics	
• History	
• A	Few	Recent	trends

8/29/18 25

https://qdata.github.io/deep2Read/
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Deep Learning is Changing the World

8/29/18 Many	more	!	Yanjun	Qi	/	UVA	CS	 26



Why	breakthrough	?	

8/29/18 27

Deep	Learning Deep	Reinforcement	Learning

Generative	
Adversarial	
Network	(GAN)

Yanjun	Qi	/	UVA	CS	



Breakthrough from 2012 Large-Scale 
Visual Recognition Challenge (ImageNet)  

In one “very large-scale” benchmark competition
(1.2 million images [X] vs.1000 different word labels [Y]) 

288/29/18

10%	improve	
with	deepCNN

Yanjun	Qi	/	UVA	CS	
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Adapt	from	From	NIPS	2017	DL	Trend	Tutorial		
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DNNs	help	us	build	more	intelligent	computers

• Perceive	the	world,	
• e.g.,	objective	recognition,	speech	recognition,	…

•Understand	the	world,	
• e.g.,	machine	translation,	text	semantic	understanding

• Interact	with	the	world,	
• e.g.,	AlphaGo,	AlphaZero,	self-driving	cars,	…

• Being	able	to	think	/	reason,	
• e.g.,	learn	to	code	programs,	learn	to	search	deepNN,	…

• Being	able	to	imagine	/	to	make	analogy,	
• e.g.,	learn	to	draw	with	styles,	……

8/29/18 30Yanjun	Qi	/	UVA	CS	



Deep	Learning	Way:	 Learning	Representation	from	data

Feature Engineering 
ü Most critical for accuracy 
ü  Account for most of the computation 
ü  Most time-consuming in development cycle 
ü  Often hand-craft and task dependent in practice 

Feature Learning 
ü Easily adaptable to new similar tasks  
ü Learn layerwise representation from data 

318/29/18 Yanjun	Qi	/	UVA	CS	



Basics

•Basic	Neural	Network	(NN)
• single	neuron,	e.g.	logistic	regression	unit	
• multilayer	perceptron	(MLP)
• various	loss	function

• E.g.,	when	for	multi-class	classification,	softmax layer
• training	NN	with	backprop algorithm

8/29/18 32Yanjun	Qi	/	UVA	CS	



One	“Neuron”:	Expanded	Logistic	Regression

x1

x2

x3

Σ

+1

z

z = wT . x + b

y = sigmoid(z) =
33

ez

1 + ez

p = 3

w1

w2

w3

b1
Summing
Function

Sigmoid
Function

Multiply	by	
weights

ŷ = P(Y=1|x,w)

Input x



E.g.,	Many	Possible	Nonlinearity	Functions	
(aka	transfer	or	activation	functions)

x w

34
https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions

Name Plot Equation Derivative	(	w.r.t	x )

usually	works	best	 in	practice



ez

1 + ez

One	“Neuron”:	Expanded	Logistic	Regression

x1

x2

x3

Σ

+1

z

z = wT . x + b

y = sigmoid(z) =
35

p = 3

w1

w2

w3

b1
Summing
Function

Sigmoid
Function

Multiply	by	
weights

ŷ = P(Y=1|x,w)

Input x

=>	“Neuron	View”



Multi-Layer	Perceptron	(MLP)- (Feed-Forward	NN)	

36

1st	
hidden	
layer

2nd
hidden
layer

Output
layer

x1

x2

x3

x ŷ

3-layer	MLP-NN

W1

w3

W2



History	è Perceptron:	1-Neuron	Unit	with	Step	
−First	proposed	by	Rosenblatt	(1958)	
−A	simple	neuron	that	is	used	to	classify	its	input	into	one	of	two	categories.	
−A	perceptron	uses	a step	function

		
φ(z)= +1	if	z ≥0

−1	if	z <0
⎧
⎨
⎩
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x1

x2

x3

Σ

Summing
Function

Step Function

w1

w2

w3

+1

b1

z

Multiply	by	
weights

Yanjun	Qi	/	UVA	CS	



z1

z2

z3

38

x1

x2

x3

x

Σ

Σ

Σ

ŷ1

ŷ2

ŷ3

E.g.,	Cross-Entropy	Loss	for	Multi-Class	Classification

“Softmax”	function. Normalizing	
function	which	converts	each	class	
output	to	a	probability.

EW (ŷ,y) = loss = - yj ln ŷjΣ
j = 1.. .K

= P( ŷi = 1 | x )

W1 W3

W2

ŷi 

Cross-entropy	loss	

K = 3



“Block	View”

x

1st	
hidden	 layer

2nd
hidden	 layer Output	 layer

39

*
W1

*
W2

*
W3

z1 z2 z3
h1 h2

Loss	Module

“Softmax”	

E (ŷ,y)
ŷ
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Building	Deep	Neural	Nets

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf

f
x y



Training	Neural	Networks

41

How	do	we	learn	the	optimal	 weights	WL for	our	 task??
● Stochastic	Gradient	descent:	

LeCun	et.	al.	Efficient	Backpropagation.	 1998	

WL
t =  WL

t-1 - 𝜂 𝝏 E
𝝏 WL

But	how	do	we	get	gradients	of	lower	layers?
● Backpropagation!

○ Repeated	application	of	chain	rule	of	calculus
○ Locally	minimize	the	objective
○ Requires	all	“blocks”	of	the	network	to	be	differentiable

x ŷ

W1

w3

W2

EW (ŷ,y)

– Main	Idea:	error	in	hidden	 layers



Illustrating	Objective	Loss	Function	(extremely	
simplified)	and	Gradient	Descent	(2D	case)
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EW 

W1 W2

E{xi,yi}(W1, W2)

The	gradient	
points	in	the	
direction	(in	the	
variable	space)	of	
the	greatest	rate	
of	increase	of	the	
function	and	its	
magnitude	 is	the	
slope	of	the	
surface	graph	in	
that	direction
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Adapt	from	From	NIPS	2017	DL	Trend	Tutorial		
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Important	Block:	Convolutional	Neural		Networks	(CNN)

• Prof.	Yann LeCun invented	CNN		in	1998	
• First	NN	successfully	trained	with	many	layers	

44Y.	LeCun,	L.	Bottou,	Y.	Bengio,	and	P.	Haffner,	Gradient-based	learning	applied	to	document	 recognition,	Proceedings	of	the	IEEE	86(11):	2278–2324,	1998.
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Adapt	from	From	NIPS	2017	DL	Trend	Tutorial		

CNN	models	Locality	and	Translation	Invariance	

Make	fully-connected	layer	locally-connected	and	sharing weight

Yanjun	Qi	/	UVA	CS	



• Prof.	Schmidhuber invented	"Long	short-term	memory”	– Recurrent	
NN	(LSTM-RNN) model	in	1997

8/29/18 46

Sepp Hochreiter;	Jürgen	Schmidhuber (1997).	"Long	short-term	memory".	Neural	Computation.	9	(8):	1735–1780.	

Image	Credits	from	Christopher	Olah

Important	Block:	Recurrent	Neural	Networks	(RNN)

Yanjun	Qi	/	UVA	CS	



RNN	models	dynamic	temporal	dependency	

47

Image	credit	:	wildML

• Make	fully-connected	layer	model	each	unit	recurrently
• Units	form	a	directed	chain	graph	along	a	sequence	
• Each	unit	uses	recent	history	and	current	input	in	modeling

LSTM	for	Machine	Translation	
(Germany	to	English)	



• Deep	Learning		
• Why	is	this	a	breakthrough	?	
• Basics	
• History	
• A	Few	Recent	trends

8/29/18 48

https://qdata.github.io/deep2Read/

Yanjun	Qi	/	UVA	CS	



Many	classification	models	
invented	since	late	80’s
• Neural	networks
• Boosting
• Support	Vector	Machine
• Maximum	Entropy	
• Random	Forest
• ……	

8/29/18 49Yanjun	Qi	/	UVA	CS	



Deep	Learning	(CNN)	in	the	90’s	
• Prof.	Yann LeCun invented	Convolutional	Neural		Networks	(CNN)		in	1998	
• First	NN	successfully	trained	with	many	layers	

8/29/18 50

Y.	LeCun,	L.	Bottou,	Y.	Bengio,	and	P.	Haffner,	Gradient-based	learning	applied	to	document	 recognition,	Proceedings	of	the	IEEE	86(11):	2278–2324,	1998.
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Deep	Learning	(RNN)	in	the	90’s	

• Prof.	Schmidhuber invented	"Long	short-term	memory”	– Recurrent	
NN	(LSTM-RNN) model	in	1997

8/29/18 51

Sepp Hochreiter;	Jürgen	Schmidhuber (1997).	"Long	short-term	memory".	Neural	Computation.	9	(8):	1735–1780.	

Image	Credits	from	Christopher	Olah
Yanjun	Qi	/	UVA	CS	



Between	~2000		to		~2011
Machine	Learning	Field	Interest

• Learning	with	Structures	!	+	Convex	Formulation!	
• Kernel	learning
• Manifold	Learning
• Sparse	Learning
• Structured	input-output	learning	…	
• Graphical	model
• Transfer	Learning
• Semi-supervised		
• Matrix	factorization	
• ……
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“Winter	of	Neural	Networks”	Since	90’s		to		~2011

• Non-convex

• Need	a	lot	of	tricks	to	play	with
• How	many	layers	?	
• How	many	hidden	units	per	layer	?		
• What	topology	among	layers	?	…….	

• Hard	to	perform	theoretical	analysis	

8/29/18 53Yanjun	Qi	/	UVA	CS	



Breakthrough in 2012 Large-Scale 
Visual Recognition Challenge (ImageNet) : 
Milestones in Recent Vision/AI Fields

8/29/18 Yanjun	Qi	/	UVA	CS	 54

- 2013,	Google	Acquired	Deep	Neural	Networks	Company	headed	by	Utoronto “Deep	Learning”	
Professor	Hinton

- 2013,	Facebook	Built	New	Artificial	Intelligence	Lab	headed	by	NYU	“Deep	Learning”	Professor	LeCun
- 2016,	Google's	DeepMind defeats	legendary	Go	player	Lee	Se-dol in	historic	victory	/	2017	Alpha	Zero	



Reason:	Plenty	of	(Labeled)	Data

• Text:	trillions	of	words	of	English	+	other	languages	
• Visual:	billions	of	images	and	videos
• Audio: thousands	of	hours	of	speech	per	day
• User	activity:		queries,	user	page	clicks,	map	requests,	etc,	
• Knowledge	graph:	billions	of	labeled	relational	triplets	

• ………

8/29/18 55Dr.	Jeff	Dean’s	talk	Yanjun	Qi	/	UVA	CS	



Reason:	Advanced	Computer	Architecture	
that	fits	DNNs

8/29/18 56Yanjun	Qi	/	UVA	CS	

http://www.nvidia.com/content/events/geoInt2015/LBrown_DL.pdf



Some	Recent	Trends
• 1.	Autoencoder/	layer-wise	training	
• 2.	CNN /	Residual	/	Dynamic	parameter	
• 3.	RNN /	Attention /	Seq2Seq,	…
• 4.	Neural	Architecture	with	explicit	Memory	
• 5.	NTM	4program	induction	/	sequential	decisions
• 6.	Learning	to	optimize	/	Learning	DNN	architectures	
• 7.	Learning	to	learn	/	meta-learning/	few-shots
• 8.	DNN	on	graphs	/	trees	/	sets
• 9.	Deep	Generative	models,	e.g.,	autoregressive
• 10.	Generative	Adversarial	Networks	(GAN)
• 11.	Deep	reinforcement	learning	
• 12.	Validate	/	Evade	/	Test	/	Understand /	Verify	DNNs	

8/29/18 57

https://qdata.github.io/deep2Read/
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Recap

8/29/18 58
Adapt	from	From	NIPS	2017	DL	Trend	Tutorial		

Learned	Models	

https://qdata.github.io/deep2Read/

Yanjun	Qi	/	UVA	CS	



BREAK	5mins		->Second	Half	
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Making	Deep	Learning	Understandable
for	Analyzing	Sequential	Data	about	Gene	
Regulation

Tutorial	@	ACM	BCB-2018

Dr.	Yanjun	Qi
Department	of	Computer	Science	
University	of	Virginia	



State-of-the-art:	Deep	Neural	Networks	(DNNs)

ATGCGATCAAGTCTG

“Dog”

“Protein-binding	Site”

608/29/18 Yanjun	Qi	/	UVA	CS	



Deep	Neural	Network	(DNN)	
X Y

Y=f4 (f3 (f2 (f1 (X))))	

Challenge	:	DNNs	are	hard	to	Interpret

61

f1 (	.	) f2 (	.	) f3 (	.	) f4 (	.	)

“Dog”

8/29/18 Yanjun	Qi	/	UVA	CS	



Ac
cu
ra
cy

Interpretability

DNNs

Our	Goal:	Interpretable	DNNs

Challenge	:	DNNs	are	
hard	to	Interpret

Linear	Regression

628/29/18 Yanjun	Qi	/	UVA	CS	



Today

• Machine	Learning:	a	quick	review	
• Deep	Learning:	a	quick	review	
• Background	Biology:	a	quick	review	
• Deep	Learning	for	analyzing	Sequential	Data	about	Regulation:	

• DeepChrome
• AttentiveChrome
• DeepMotif

8/29/18 63

https://www.deepchrome.org

https://qdata.github.io/deep2Read/

Yanjun	Qi	/	UVA	CS	



Biology	in	a	Slide

DNA RNA
PROTEIN

ORGANISM

64

CELL

Transcription

Translation

8/29/18 Yanjun	Qi	/	UVA	CS	



DNA	and	Diseases

DNA
PROTEIN

• Down	Syndrome

• Parkinson’s	Disease

• Autism

• Muscular	Atrophy

• Sickle	Cell	Disease
……….
………..

658/29/18 Yanjun	Qi	/	UVA	CS	



Control
Gene	

Transcription

66

Chromatin

8/29/18 Yanjun	Qi	/	UVA	CS	

Epigenetics	
“Environment	
of	the	DNA”



Histone	Proteins

67
Image:https://www.khanacademy.org/science/biology/cellular-molecular-biology/intro-to-cell-division/a/dna-and-chromosomes-article

CELL

8/29/18 Yanjun	Qi	/	UVA	CS	



68

DNA

Gene

ATCGCGTAGCTAGGGATGACAGACACACATAATGT

TF

Transcription	Factors

Gene

Transcription	Factor	Binding		=>	Gene	Transcription

8/29/18 Yanjun	Qi	/	UVA	CS	



Histone	Modifications	(HM)

Histone

DNA Gene

Gene

69

TF

8/29/18 Yanjun	Qi	/	UVA	CS	



Genome	Organization	and	Gene	Regulation	

Genes
Promoters
Enhancers

Regulatory	Elements
Histone	Modifications
DNA	methylation

Chromatin	remodeling

Chromatin	Structure Nuclear	Architecture

Chromosomal	 organization
Long	range	interactions

(a
da
pt
ed
	fr
om

	B
ab
u
et
	a
l.,
	2
00
8)

Level	1 Level	2 Level	3

Cellular	Phenotype
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Genes
Promoters
Enhancers

Regulatory	Elements
Histone	Modifications
DNA	methylation

Chromatin	remodeling

Chromatin	Structure

Level	1 Level	2

ENCODE	Project (2003-Present)
Describe	the	functional	elements	encoded	in	human	DNA

8/29/18 71Yanjun	Qi	/	UVA	CS	



Genes
Promoters
Enhancers

Regulatory	Elements
Histone	Modifications
DNA	methylation

Chromatin	remodeling

Chromatin	Structure

Level	1 Level	2

ENCODE	Project	(2003-)
Describe	the	functional	elements	encoded	in	human	DNA

RoadmapEpigenetics	Project	(REMC,	2008-)
To	produce	a	public	 resource	of	epigenomic maps	for	stem	
cells	and	primary	ex	vivo	tissues	selected	to	represent	the	
normal	counterparts	of	tissues	and	organ	systems	
frequently	 involved	 in	human	disease.

8/29/18 72Yanjun	Qi	/	UVA	CS	



Gene	
Expression

TF	Binding	
Signals

Histone	
Modification	

Signals

DNA	
Segments	

on	
Genomes

Many	Important	Data-Driven	Computational	Tasks

73

ATGCGATCAAGTCTG
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Sequential Input (X)

Strings, signals etc.
ATCGATCTCTAGATCTCTG..

8/29/18 Yanjun	Qi	/	UVA	CS	 74



Sequential Input (X)

Strings, signals etc.
ATCGATCTCTAGATCTCTG..

75

This Food is not good.
NO	
(-1)

X
Function

f(X)	

8/29/18 Yanjun	Qi	/	UVA	CS	



Gene	
Expression

TF	Binding	
Signals

Histone	
Modification	

Signals

DNA	
Segments	

on	
Genomes

Many	Important	Data-Driven	Computational	Tasks

76

ATGCGATCAAGTCTG

First	Task

8/29/18 Yanjun	Qi	/	UVA	CS	



Histone	Modification	and	Gene	Transcription	

Transcription	Factor	
(TF)

Gene	Transcription

Histone	Modification	
(HM)

778/29/18 Yanjun	Qi	/	UVA	CS	



Transcription	Factor	
(TF)

Gene	Transcription

Histone	Modification	
(HM) ?

78

Histone	Modification	and	Gene	Transcription	
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Transcription	Factor	
(TF)

Gene	Transcription

Histone	Modification	
(HM) ?

79

Histone	Modification	and	Gene	Transcription	

8/29/18 Yanjun	Qi	/	UVA	CS	



• Epigenomics:	
• Study	of	chemical	changes	in	DNA	and	histones	(without	altering	DNA	sequence)	
• Inheritable	and	involved	in	regulating	gene	expression,	development,	tissue	
differentiation	and	suppression	…

• Modification	in	DNA/histones	(changes	in	chromatin	structure	and		function)	
• =>	influence	how	easily	DNA	can	be	accessed	by	TF

• Epigenome is	dynamic
• Can	be	altered	by	environmental	conditions	
• Unlike	genetic	mutations,	chromatin	changes	such	as	histone	modifications	are	
potentially	reversible	=>	EpigenomeDrug for	Cancer	Cells?

Why	Studying	[HM	=>	Gene	Expression]	?

8/29/18 80Yanjun	Qi	/	UVA	CS	



Study	how	HMs	influence	genes?

81

Gene	A Gene	B

HM1 HM2 HM3 HM1 HM2 HM3 DNA

8/29/18

~56	Cell	Types

Yanjun	Qi	/	UVA	CS	

K~20 HMs
G~30,000 Genes



Task Formulation

Input: Output:

Gene
ExpressionDNA Gene

? ? ?

HM1

828/29/18 Yanjun	Qi	/	UVA	CS	



Input

83

-5000	bp +5000	bp

Gene	A

Gene	A

Gene	A

Gene	A

Gene	A

HM1

HM2

HM3

HM4

HM5

Transcription	Start	Site	

Bin	# 1 2 3 4	.. 100

HM1
HM2
HM3
HM4
HM5

Bin	# 1 2 3 4	.. 100
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Computational Challenge

HM1

Gene
Expression

DNA Gene

HM2

HM3

DNA

DNA

Gene

Gene

?

? K = 5 HMs
B =100 Bins
Search Space= 2(B+K)
2(100+5) ~ 4 x 1031

84? ? ?8/29/18 Yanjun	Qi	/	UVA	CS	



Related Work

HM1
DNA Gene

HM2

HM3

DNA

DNA

Gene

Gene

Linear Regression
SVMs
Random Forests

[1] Karli´c, R. et al, Histone modification levels are predictive for gene expression. Proceedings of the National Academy of Sciences (2010)
[2] Cheng, C. et al, A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets. Genome Biology (2011)
[3] Dong, X. et al, Modeling gene expression using chromatin features in various cellular contexts. Genome Biology (2012)

Gene
Expression
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Drawback	of	Related	Works

86

Linear Regression,
SVM,
Random Forest

8/29/18

Gene	Expression	On/Off	
[1]	Karli´c,	R.	et	al,	Histone	modification	levels	are	predictive	for	gene	expression.	Proceedings	of	the	National	Academy	of	Sciences	(2010)
[2]	Cheng,	C.	et	al,		A	statistical	framework	for	modeling	gene	expression	using	chromatin	features	and	application	to	modENCODEdatasets.	Genome	Biology	(2011)
[3]	Dong,	X.	et	al,	Modeling	gene	expression	using	chromatin	features	in	various	cellular	contexts.	Genome	Biology	(2012)

Yanjun	Qi	/	UVA	CS	



First	Solution	:	CNN

Input Output

Park

SKY
TREE

HUMAN

HM1

HM2

DNA

DNA

Gene

87

HM	signals	occupy	a	local	region	
and	look	similar	in	different	parts?			
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DeepChrome

88R. Singh, et al. ”Deep-learning for predicting gene expression from histone modifications”. Bioinformatics. (ECCB) (2016)

First	Solution:	DeepChrome :	CNN

HM1

HM2

HMk

8/29/18 Yanjun	Qi	/	UVA	CS	



Input (X)

HM1
DNA Gene

HM2 HM3
DNA DNA

Gene Gene

898/29/18 Yanjun	Qi	/	UVA	CS	



Output (Y) Labels

Genes Gene Expression
(RPKM)

Y
Labels

…… ……. ……

Threshold = 10.245 (Median)

RUNX1

SMAD2

MYC

PAX5

1.296

14.902

3.805

15.066

0

1

0

1
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DeepChrome:	Convolutional	Neural	Network	(CNN)	

HM1

HM2

HM3
HM4
HM5

X

91

1.	Convolution

8/29/18 Yanjun	Qi	/	UVA	CS	



DeepChrome:	Convolutional	Neural	Network	(CNN)	

HM1

HM2

HM3
HM4
HM5

X

f(X)

Y=1/-1

		
E = loss( f (

n=1

Nsamp

∑ X (n)), y(n))

1.	Convolution 2.	Max
Pooling

3.	Dropout
4.	Multi-layer
Perceptron

5.	Softmax

928/29/18 Yanjun	Qi	/	UVA	CS	



DeepChrome:	Convolutional	Neural	Network	(CNN)	

HM1

HM2

HM3
HM4
HM5

X

93

	
Θ←Θ−η ∂E

∂Θ
Back-propagation:

E (ŷ,y)

8/29/18 Yanjun	Qi	/	UVA	CS	



Experimental	Setup

94

• Roadmap	Epigenetics	Project	(REMC)
• Cell-types:	56
• Input	(HM):	ChIP-Seq Maps	/	5	Tier-1	HMs

• Output	(Gene	Expression):	Discretized	RNA-Seq
• Baselines: Support	Vector	Classifier	(SVC)	and	Random	Forest	Classifier	(RFC)

Histone Mark Functional	Category

H3K27me3 Repressor

H3K36me3 Structural Promoter

H3K4me1 Distal	Promoter

H3K4me3 Promoter

H3K9me3 Repressor

Training	Set
6601	Genes

Validation	Set
6601	Genes

Test	Set
6600	Genes8/29/18 Yanjun	Qi	/	UVA	CS	



Results:	Accuracy

95

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

AU
C	
Sc
or
e

56	Cell-types

DeepChrome SVC RFC
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Summary	of	tools	

8/29/18 96

Accurate

DeepChrome

Understandable

https://www.deepchrome.org

R. Singh, et al. Deep-learning for predicting gene expression from histone modifications”. Bioinformatics. (2016)Yanjun	Qi	/	UVA	CS	

hard to
interpret



Solution:	Interpretability	by	Hierarchical	Attention

Input Output

HM1

HM2

DNA Gene

DNA
Gene

Gene

Attention	
Mechanism

97

Park

8/29/18 Yanjun	Qi	/	UVA	CS	



Solution:	Interpretability	by	Hierarchical	Attention

Input Output

HM1

HM2

DNA Gene

DNA
Gene

Gene

Attention	
Mechanism

98

Park

(1)	What	positions	are	important?

(2)	What	HMs	are	important?
8/29/18 Yanjun	Qi	/	UVA	CS	



99

Attentive
Chrome

HM1

HM2

R.	Singh,	et	al. ”Attend	and	Predict:	Understanding	Gene	Regulation	by	Selective	Attention	on	Chromatin”.	NIPS	(2017)	

HMk

8/29/18 Yanjun	Qi	/	UVA	CS	



AttentiveChrome

HM1 HM2 HM3
Input

Gene
Expression

Bin-Level
Attention

HM-Level
Attention

(1) What positions are important?

(2) What HMs are important?

100

[NIPS 2017]

8/29/18 Yanjun	Qi	/	UVA	CS	



101

Recurrent	Neural	
Network	(RNN) RNNRNNRNNRNN

Multiple	Recurrent	Neural	Networks	(Hierarchical	RNNs)	
to	model	each	HM	and	the	Combination	of	all	HMs	:	for	example	on	HM1

HM1

8/29/18 Yanjun	Qi	/	UVA	CS	



Attention Mechanism

W

HM1

Softmax

Context
Vector

HM1

Attention weights per gene

1028/29/18 Yanjun	Qi	/	UVA	CS	



Using	Attention to	Select	RNN	per-unit	outputs

8/29/18 103

Wb is	learned		

Image	Credits	from	Christopher	Olah
Yanjun	Qi	/	UVA	CS	



Prediction

104

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
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 (A
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C
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56 Cell-types

RFC SVC DeepChrome AttentiveChrome

Improvement for
49/56 Cell-types
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Bin-Level Visualization

CELL TYPE: GM12878 (Blood Cell)

H3K27me3 H3K9me3 H3K4me1 H3K4me3 H3K36me3

105

PromotersRepressors

(1) What positions are important?

8/29/18 Yanjun	Qi	/	UVA	CS	



HM-Level Visualization

Cell Types: GM12878
(Blood Cell)

K562
(Leukemia)

H3K27me3

H3K36me3

H3K4me1

H3K4me3

H3K9me3

Gene: PAX5

H1-Hesc
(Stem Cell)

PROMOTER
DISTAL PROMOTER
REPRESSOR

Color Scale

(2) What HMs are important?

1068/29/18 Yanjun	Qi	/	UVA	CS	



Results:	HM	level	attention

107

ØAn	important	differentially	regulated	
gene	(PAX5)	across	three	blood	
lineage	cell	types:	
ØH1-hESC	(stem	cell),	
ØGM12878	(blood	cell),	
ØK562	(leukemia	cell).	

ØTrend	of	its	global	weights	(beta)	
Verified	through	the	literature.	

8/29/18 (2)	What	HMs	are	important?Yanjun	Qi	/	UVA	CS	



Validation	of	Attention	Weights	(using	one	extra	HM	signals	)

108

Ø Additional	 signal	- H3K27ac	(H-Active)	from	REMC
Ø Average	local	attention	weights	of	gene=ON	correspond	well	with	H-active
Ø Indicating	AttentiveChrome is	focusing	on	the	correct	bin	positions

8/29/18 Yanjun	Qi	/	UVA	CS	



Summary	of	tools	

8/29/18 109

Accurate

DeepChrome AttentiveChrome

Understandable

https://www.deepchrome.org

R.	Singh,	et	al. ”Attend	and	Predict:	Understanding	Gene	Regulation	by	Selective	Attention	on	Chromatin”.	NIPS	(2017)	Yanjun	Qi	/	UVA	CS	



Where are we heading?

Genes Gene Expression
(RPKM)

Y
log(RPKM)

…… ……. ……

RUNX1

SMAD2

MYC

PAX5

1.296

14.902

3.805

15.066

01126

1.1737

0.5803

1.779

Changing Task : Classification àRegression

Mean Square Error
Loss

(Y - f(X))2

110

Gene
Expression

1.770

8/29/18 Yanjun	Qi	/	UVA	CS	



Where are we heading?

Changing Task : Classification àRegression

111-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

D
iff

er
en

ce
 in

 P
ea

rs
on

 C
or

re
la

tio
n 

C
oe

ffi
ec

ie
nt

s
D

ee
pC

hr
om

e 
(R

) -
SV

R

56 Cell Types

Correlation (Predicted Value, True Value)
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Where are we heading?

Changing Task : Cell-Specific à Cross Cell

112

DeepDiff: Deep-learning for predicting Differential gene expression from histone modifications 

1 Main Task: Differential gene expression prediction

2 Cell-Specific Auxiliary: Auxiliary-Task-A and Auxiliary-Task-B  
cell type specific prediction

1

2

21 +

32 +

21 + 3+

Raw:d, Raw:c, Raw

Aux

Raw+Aux

Aux+Siamese

Raw+Aux+Siamese

3 Siamese Auxiliary: Siamese contrastive loss

DeepDiff Variations Objective Loss

ℓDiff

ℓDiff+ℓ CellAux

ℓDiff+ℓ CellAux

ℓDiff+ℓ CellAux+ℓ Siamese

ℓDiff+ℓ CellAux+ℓ Siamese

Main Task
Level I 

Embedding

Auxiliary-Task-A
Level I 

Embedding

Auxiliary-Task-B
Level I 

Embedding

Main Task
Level II 

Embedding

Auxiliary-Task-A
Level II 

Embedding

Auxiliary-Task-B
Level II 

Embedding

Main Task
Differential 
Prediction

Auxiliary-Task-A
Prediction A

Auxiliary-Task-B
Prediction B

XA - XB , [XA,XB] XA XB
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Where are we heading?

Changing Task : Cell-Specific à Cross Cell

113

DeepDiff: Deep-learning for predicting Differential gene expression from histone modifications 

-10,000 bp +10,000 bp 

Gene X 

Gene X 

Gene X 

Gene X 

Gene X 

HM1 

HM2 

HM3 

HM4 

HM5 

...... 100 bp  ….. 
H

is
to

ne
 M

od
ifi

ca
tio

ns
 

Transcription Start 
Site (TSS) 

Bin # 1 2 3 4 .. 200 

Epigenetic Features for Gene X in Cell A/B 

HM1

HM2

HM3

HM4

HM5

Bin # 1    2    3   4 ..                                                    200

HM1

HM2

HM3

HM4

HM5

Raw Concat Matrix for Gene X 

Ce
ll 

ty
pe

 A
Ce

ll 
ty

pe
 B

HM1

HM2

HM3

HM4

HM5

Bin # 1    2    3   4 ..                                                    200

Raw Input Matrix for Gene X in Cell-type A: XA

HM1

HM2

HM3

HM4

HM5

Bin # 1    2    3   4 ..                                                    200

Raw Input Matrix for Gene X in Cell-type B: XB

Diff-HM1

Bin # 1    2    3   4 ..                                                    200

Raw Difference Matrix for Gene X: XA - XB

Raw Concat Matrix for Gene X: [XA , XB ]

Diff-HM2

Diff-HM3

Diff-HM4

Diff-HM5

(a) (b)
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Today

• Machine	Learning:	a	quick	review	
• Deep	Learning:	a	quick	review	
• Background	Biology:	a	quick	review	
• Deep	Learning	for	analyzing	Sequential	Data	about	Regulation:	

• DeepChrome
• AttentiveChrome
• DeepMotif

8/29/18 114

https://www.deepchrome.org

https://qdata.github.io/deep2Read/

Yanjun	Qi	/	UVA	CS	



Gene	
Expression

TF	Binding	
Signals

Histone	
Modification	

Signals

DNA	
Segments	

on	
Genomes

Many	Important	Data-Driven	Computational	Tasks

115

ATGCGATCAAGTCTG

Second	
Task

8/29/18 Yanjun	Qi	/	UVA	CS	



Transcription Factors

DNA Gene A

TF

………ATCGACATAGCTAGATCG………

DNA Gene B………AACATAGCTAGATCGAAA………

116

Gene
Expression

8/29/18 Yanjun	Qi	/	UVA	CS	



TF-Binding Site?

TF

DNA Gene A………ATCGACATAGC………

ATCGAATCCG

CCCTCTATCG

………CCCCTGACCATAGC………

? ?

“TF-Binding Site?”

1178/29/18 Yanjun	Qi	/	UVA	CS	



...GCGACGAATCG...AACGATATGCT...CATATCATTTC...TGTCAAG...CTCGAGTC...TATCAAGCTG...

Task:	Sequence	Based	Functional	Annotation	Tasks	

TF1 TF1TF2 TF3

118

TF2TF3 TF1 TF2



119

Input	Sequence
Probability	of
Binding	Site

1. Convolutional	(CNN)

3.	Convolutional-
Recurrent	(CNN-RNN)

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi University	of	Virginia

2.	Recurrent	(RNN)

DeepSEA,	DeepBind,	BASSET,	DanQ,	….

Literature:	Various	DNN	Tools	



Deep	Motif	Dashboard:	Understand	DNNs	by	Post	Analysis
Lanchantin,	Singh,	Wang	&	Qi	- Pacific	Symposium	on	Biocomputing,	2017	

1. Saliency	Maps - recommending	on	CNN	kind	
2. Temporal	Output	Values - recommending	on	RNN	kind	
3. Class	Optimization - recommending	on	CNN	kind	

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi
8/29/18 Yanjun	Qi	/	UVA	CS	 120



1.	Saliency	Map

Which	nucleotides	are	most	important	for	my	current-sample	classification?

positive	binding	 site
X S+

121

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi



1.	Saliency	Map

positive	binding	 site
X0

S+

122

= “saliency map”

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi

Quiz:	What	is	gradient?

Deep Inside Convolutional Networks: Visualising Image 
Classification Models and Saliency Maps, ICLR 2013



1.	Saliency	Map

Positive	sentiment
X S+

123

This movie	 has	 one of	 the best plots I		 have seen

=	important	for	classification

This	movie	has	one	of	the	
best	plots	I	have	seen

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi



1.	Saliency	Map

Positive	Test	Sequence

Saliency	Map

=	important	nucleotide	for	prediction

positive	binding	 site
X S+

124

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi



2.	Temporal	Output	Values

What	are	the	model’s	predictions	at	each	timestep	of	the	DNA	sequence?

positive	binding	 site
X S+

125

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi



2.	Temporal	Output	Values

Check the RNN’s prediction scores when we vary the input of 
the RNN starting from the beginning to the end of a sequence.

positive	binding	 site
X S+

126

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi



I don’t like	 the actors, but I really enjoyed	 this movie

2.	Temporal	Output	Values

positive	sentiment
X

S+

I	don’t	 like	the	actors,	but	 I	really	enjoyed	this	movie

=	negative	sentiment =	positive	sentiment
127

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi



2.	Temporal	Output	Values

positive	binding	 site
X S+

Positive	Test	Sequence

RNN	Forward	Output

RNN	Backward	Output

=	negative	binding	site	prediction =	positive	binding	site	prediction 128

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi



3.	Class	Optimization

For	a	particular	TF,	what	does	the	optimal	binding	site	sequence	look	like?

? positive	binding	 site	for	TF	“CBX3”

129

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi



3.	Class	Optimization

positive	binding	 site	for	TF	“CBX3”

Where X is the input sequence and the score S+ is probability of 
sequence X being a positive binding site

130

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi

Deep Inside Convolutional Networks: Visualising Image 
Classification Models and Saliency Maps, ICLR 2013



Optimal	binding	
site	for	TF	“CBX3”

3.	Class	Optimization

positive	binding	 site	for	TF	“CBX3”

131

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi



1. Saliency	Maps – (CNN	kind)	
2. Temporal	Output	Values – (RNN	kind)

3. Class	Optimization – (CNN	kind)	

Visualization	Methods

Sequence
Specific

TF	Specific

DeMo	Dashboard	- Lanchantin,	Singh,	Wang,	&	Qi University	of	Virginia

code	available	at:	deepmotif.org
8/29/18 Yanjun	Qi	/	UVA	CS	 132



Related	Work	to	Post-Understand	DNN

• Deconvolution

• Perturbation-based	

• Backpropagation-based

• Difference	to	Reference

• Influence	based	

133

Temporal	Output	Values

Saliency	Map Class	Optimization

DeepLift

Influential	Function	 /	ICML27	Best	Paper

8/29/18 Yanjun	Qi	/	UVA	CS	



Summary	of	tools	

8/29/18 134

Accurate

DeepChrome AttentiveChrome

DeepMotif

Understandable

https://www.deepchrome.org

Yanjun	Qi	/	UVA	CS	



Recap
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Accurate

DeepChrome

Understandable

https://www.deepchrome.org
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Recap
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Accurate

DeepChrome AttentiveChrome

Understandable

https://www.deepchrome.org

Yanjun	Qi	/	UVA	CS	



Recap
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Accurate

Understandable

DeepChrome AttentiveChrome

DeepMotif

Yanjun	Qi	/	UVA	CS	



Recap

8/29/18 138

Accurate

Understandable

DeepChrome AttentiveChrome

DeepMotif

Linear??

Yanjun	Qi	/	UVA	CS	
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Thank	you
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More	Tools:		A	Fast	and	Scalable	
Tool	to	Classify	Biological	

Sequences

https://github.com/QData/iGakco-SVM

8/29/18 Yanjun	Qi	/	UVA	CS	 141



String Kernel + SVM

Support Vector Machine
(SVM)

K(.)

String Kernel
Function

S=TCGAATCCG
T=GCTGAATCG

S=QGGHAKKQQ
T=KKHAVQQVV

K(S,T)=𝛗(S). 𝛗(T)

1428/29/18 Yanjun	Qi	/	UVA	CS	



Our	Tool	Scales	well	with	increasing	∑	and	m

GaKCo

(b) Protein (1.34)(a) DNA (EP300)
GaKCo (Single thread)

(c) Text (Sentiment)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9

K
er

ne
l C

al
cu

la
tio

n 
Ti

m
e 

(lo
g 

se
co

nd
s)

M = (g-k)

gkm-SVM

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7

K
er

ne
l C

al
cu

la
tio

n 
Ti

m
e 

(lo
g 

se
co

nd
s)

M = (g- k)

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9

K
er

ne
l C

al
cu

la
tio

n 
Ti

m
e 

(lo
g 

se
co

nd
s)

M = (g -k)

143

gkm-SVM	:	>	5	hrs
GaKCo :	4	mins

GaKCo

(b) Protein (1.34)(a) DNA (EP300)
GaKCo (Single thread)

(c) Text (Sentiment)
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More	Tools:		Extracting	
graphs	from	data	
https://www.jointggm.org
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Motivation:	Graphs	vary	across	contexts
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Limitation of	Previous	Methods	:	Storage
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e.g.,	calculate	the	gradient

in	memory

Double type:	65	TB	

When	K	contexts=	91,	p	nodes=	30K
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Limitation of	Previous	Methods:	Speed

147

Current	Optimization: ADMM	based
---- Still	needs	SVD	for	each	covariance	matrix

SVD	for	the	matrices	needs	

Traditional	Optimization	Method	
---- Block	Coordinate	Descent	:		

K	=	91,	p=	30K

more	than	2	billion years

Suppose they have the same iteration number T

3.5	days

/ Itera

/ Itera8/29/18 Yanjun	Qi	/	UVA	CS	



Our	Tools

• Fast	and	scalable	estimators	for	joint	graph	discovery	
from	heterogeneous samples

•Parallelizable	algorithms
• Sharp	convergence	rate	(sharp	error	bounds)

1488/29/18

More	details	at:	http://www.jointggm.org/
Yanjun	Qi	/	UVA	CS	


