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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do
e Sample minibatch of m noise samples {z(1), ..., z("™)} from noise prior Bl 2
e Sample minibatch of m examples {m(l), ...,x(™} from data generating distribution
pdata(w)-
e Update the discriminator by ascending its stochastic gradient:

Vo, 3" oD () +10g (1- D (¢ (29)))].

1=

end for
e Sample minibatch of m noise samples {z(l), cee z(m)} from noise prior py(2).
e Update the generator by descending its stochastic gradient:

%o, 2108 (1-0 (6 (=),

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al. Generative Adversarial Nets. NIPS 2014
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Theorem 1: Global Optimality of Py = Pdata

Proposition 1. For G fixed, the optimal discriminator D is

* . pdam(x)
DG(m) B pdara(m) +pg(m)

Proof. The training criterion for the discriminator D, given any generator (5, is to maximize the
quantity V (G, D)

vG.o)= |

r

Pdata (@) log(D(x))dx + /pz (z)log(1 — D(g9(2)))dz

- / Pasa (%) 10g(D()) + pg() log(1 — D(x))da L

For any (a,b) € R?\ {0, 0}, the function y — alog(y) + blog(1 — y) achieves its maximum in
[0,1] at _%5. The discriminator does not need to be defined outside of Supp(paaa) U Supp(py),
concluding the proof. 0

Goodfellow et al. Generative Adversarial Nets. NIPS 2014
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Image Generation

e Inputimage and noise results in output image (X, z) — X
e D: gradient ascent

m

Vod%Z [1ogD (w"") + log (1 —D (G (z(i))))]

i=1

e G: gradient descent

m

Vo, % ;log‘ (1-p(c(=")))

Goodfellow et al. Generative Adversarial Nets. NIPS 2014
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Deep Convolutional GANs (DCGAN)

e Combine CNN and GAN for unsupervised learning
e Learns a hierarchy of feature representations
e Previous attempts to scale up GANs using CNNs unsuccessful
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s y

Project and reshape

Alec Radford, Luke Metz, Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016
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DCGAN - The Convolution Operation
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DCGAN - Convolutional Neural Networks
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lec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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DCGAN - Contributions

e Set of constraints on architectural topology of Convolutional GANs that make
them stable to train

e Trained discriminators used for classification tasks, competitive performance

e Learned filters learned to draw specific objects

e Generators allow for easy manipulation of semantic qualities of generated
samples

Alec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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DCGAN - Related Work

e Strided Convolutions: Tobias, Jost, et al. “Striving for Simplicity: The All Convolutional Net.” [1412.6806] Striving for
Simplicity: The All Convolutional Net, 13 Apr. 2015, arxiv.org/abs/1412.6806.

e Representation learning: Rasmus, Antti, Valpola, Harri, Honkala, Mikko, Berglund, Mathias, and Raiko, Tapani.
Semi- supervised learning with ladder network. arXiv preprint arXiv:1507.02672, 2015.
https://arxiv.org/abs/1507.02672

e Laplacian Pyramid: Denton, et al. “Deep Generative Image Models Using a Laplacian Pyramid of Adversarial
Networks.” [1506.05751] Deep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks, 18
June 2015, arxiv.org/abs/1506.05751. https://arxiv.org/abs/1506.05751

e Deconvolutions: Dosovitskiy, Alexey, Springenberg, Jost Tobias, and Brox, Thomas. Learning to generate chairs
with convolutional neural networks. arXiv preprint arXiv:1411.5928, 2014. https://arxiv.org/abs/1411.5928

e Batch Normalization: Sergey, et al. “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift.” [1502.03167], 2 Mar. 2015, arxiv.org/abs/1502.03167.

e Global Average Pooling: Mordvintsev, Alexander, Olah, Christopher, and Tyka, Mike. Inceptionism : Going deeper

into neural networks. http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html.
Accessed: 2015-06-17.

Alec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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DCGAN - Approach

e Replace spatial pooling layers with strided convolutions
o Allows network to learn its own downsampling for discriminator
o Allows network to learn its own upsampling for generator (fractionally strided)

e Use batchnorm in generator and discriminator
o Input to each unit normalized to have zero mean and unit variance
o Prevent mode collapse, stabilize training

e Remove fully connected hidden layers for deeper architectures
e RelU activation in generator for all layers except output, which uses Tanh

e |eakyRelLU activation in discriminator for all layers
o Compare to maxout activation in Goodfellow

Alec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called

deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

Alec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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DCGAN Architecture
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Max Pooling

e Reduces dimensionality of input
e Prevents overfitting, reduces computational cost
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Alec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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Strided Convolutions (Discriminator)

Normal convolution operation
Stride determines step size across the inpu
Reduces dimensionality of output

Compared to pooling
o Pros: more general, better summarizer
o Cons: higher training time

Alec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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Fractional Convolutions (Generator)

Also known as transposed convolutions and wrongly as deconvolutions
Upsampling method (lower to higher resolution)
Stride s is less than 1

Filter weights are learned by backprop

Alec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called

deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

Alec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016

20


https://arxiv.org/abs/1511.06434

Generator

21

Alec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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Fractional Convolutions (Generator)
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Alec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

lec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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A

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

lec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016
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Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

lec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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Random filters Trained filters

Figure 5: On the right, guided backpropagation visualizations of maximal axis-aligned responses
for the first 6 learned convolutional features from the last convolution layer in the discriminator.
Notice a significant minority of features respond to beds - the central object in the LSUN bedrooms
dataset. On the left is a random filter baseline. Comparing to the previous responses there is little to
no discrimination and random structure.

Alec Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016
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Conditional GANs

e Multimodal learning with class conditional (X, z,y) = Y
e Modified GAN Loss

m(i;n max V(D, Q) = Egnpya () 108 D(®)] + Eznp, () [log(1 — D(G(2)))].

|

mci;n mBXV(Da G) = ]Ew'vpdata(m) log D(z|y)] + EZsz (%) [log(l — D(G(z]y)))]-

Mirza, et al. “Conditional Generative Adversarial Nets.” 2014,

(D

)

29


http://arxiv.org/abs/1411.1784

(YYXY)

. eeee® @©0000)
0000
(YYYY)
/\
eeeee 00000

i dversarial Nets.” 2014

30


http://arxiv.org/abs/1411.1784

Conditional GANs - Domain Transfer
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Zhu, Jun-Yan, et al. “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks.”
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Figure 2. Three investigated models. (a) standard GAN (Goodfellow et al., 2014), (b) GAN with a reconstruction loss, (c) our proposed
model (DiscoGAN) designed to discover relations between two unpaired, unlabeled datasets. Details are described in Section 3.

33

im, et al. “Learning to Discover Cross-Domain Relations with Generative Adversarial Networks” 2017.
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(a) Training the discriminator (b) original-to-target domain (c) Target-to-original domain (d) Fooling the discriminator
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Figure 3. Overview of StarGAN, consisting of two modules, a discriminator DD and a generator G. (a) D learns to distinguish between
real and fake images and classify the real images to its corresponding domain. (b) G takes in as input both the image and target domain
label and generates an fake image. The target domain label is spatially replicated and concatenated with the input image. (c¢) G tries to
reconstruct the original image from the fake image given the original domain label. (d) G tries to generate images indistinguishable from

real images and classifiable as target domain by D.
34

Kim, et al. “Learning to Discover Cross-Domain Relations with Generative Adversarial Networks” 2017.
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StarGAN - Background

e Image-to-image translation: change a particular aspect of a given image to
another (e.g. facial expression smiling to frowning)

e Attribute: meaningful feature inherent in image (e.g. hair color/gender/age)

e Attribute value: value of attribute (e.g. brown hair)

e Domain: a set of images sharing the same attribute value

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Previous Work

e Conditional GANs - steer image translation to various target domains by
providing conditional domain information

e Image-to-image translation

o Can preserve key attributes of domains being transferred
o HOWEVER every current framework can only transfer between two domains at a time, and is
not scalable.

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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(a) Cross-domain models (b) StarGAN

8

Figure 2. Comparison between cross-domain models and our pro-
posed model, StarGAN. (a) To handle multiple domains, cross-
domain models should be built for every pair of image domains.
(b) StarGAN is capable of learning mappings among multiple do-
mains using a single generator. The figure represents a star topol-
ogy connecting multi-domains.

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Objective: Train a single generator to learn
mappings between domains.
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Model

e Generator G(z,c) = y.
o Where x is the input image to translate
o cis a given target domain label
o vy isthe outputimage
e Discriminator D : z = {Dgre(z), Das(z)}
o  Where src is the probability distribution over sources
o cls is the probability over domain labels

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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(a) Training the discriminator (b) original-to-target domain (c) Target-to-original domain (d) Fooling the discriminator
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Figure 3. Overview of StarGAN, consisting of two modules, a discriminator D and a generator G. (a) D learns to distinguish between
real and fake images and classify the real images to its corresponding domain. (b) G takes in as input both the image and target domain
label and generates an fake image. The target domain label is spatially replicated and concatenated with the input image. (¢) G tries to
reconstruct the original image from the fake image given the original domain label. (d) G tries to generate images indistinguishable from

real images and classifiable as target domain by D.
Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Adversarial Loss

e Make generated images indistinguishable from real images (1)

Ead'v =]Ea: [log DSTC(x)] T

Ez,cllog (1 — Dsre(G(z,c))]
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Domain Classification Loss (DCL)

Goal is to translate x into an output image y, which is properly classified to the
target domain c.

Objective is decomposed into two terms: DCL of real images used to optimize
D, and domain classification loss of fake images used to optimize G.

cls = E.’L‘ ' [ logDCls( ,I.’II)]
[:cls = Em,c[_ log DClS(C|G($’ C))]
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Reconstruction Loss

e Minimizing adversarial loss and classification loss means G is able to
generate realistic images to the right domain, but it does not guarantee that
translated images only change the domain-related part of image.

e AKA cycle-consistency loss, where G takes in the translated image and the

original domain label ¢’

Lrec — ]Ea:,c,c’ [”.’L‘ o G(G(CE, C), C,)||1]

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Summary Lady =E; [log Dsre(z)] +

Adversarial (1) Ez c[log (1 — Dsre(G(z,€))],
Domain Classification (2)(3) p
Reconstruction (4) cls = Eg e [ log Deis(c ICU)],

Generator Objective (5) 3
Discriminator Objective (6) Lgls == ]Em,c[_ log D.;s(c|G(z, c))].

o  With importance hyperparams

Lrec w— ]E:z:,c,c’“lx = G(G(IL‘, C)a C’)l 1]’

ED e _Lad'v /\cls cls’
£G' e £adv “+ )\cls E + /\rec Lrem
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Training with Multiple Datasets

e Label information is only partially known to each dataset

e EXx: Face Datasets

o CelebA (hair color, eye color, skin color)
o RaFB (facial expressions)

e Complete information on class label vector ¢’ is required for reconstruction of
input image x from translated image G(x, c)
e Mask Vector: a n-dimensional one-hot vector m that allows StarGAN to ignore

unspecified labels and focus on explicitly known labels
o n = # of datasets
o c.i = vector of labels for ith dataset

¢c=|c1y..., Cp,m]

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Figure 1. Multi-domain image-to-image translation results on the CelebA dataset via transferring knowledge learned from the RaFD dataset.
The first and sixth columns show input images while the remaining columns are images generated by StarGAN. Note that the images are
generated by a single generator network, and facial expression labels such as angry, happy, and fearful are from RaFD, not CelebA.

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Figure 4. Facial attribute transfer results on the CelebA dataset. The first column shows the input image, next four columns show the single
attribute transfer results, and rightmost columns show the multi-attribute transfer results. H: Hair color, G: Gender, A: Aged.

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Figure 6. Facial expression synthesis results of StarGAN-SNG and StarGAN-JNT on CelebA dataset.
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Method Hair color Gender Aged

DIAT 9.3% 31.4% 6.9%
CycleGAN 20.0% 16.6% 13.3%
IcGAN 4.5% 12.9% 9.2%
StarGAN 66.2% 39.1% 70.6%

Table 1. AMT perceptual evaluation for ranking different models
on a single attribute transfer task. Each column sums to 100%.

Method H+G H+A G+A  H+G+A
DIAT 204% 15.6% 18.7%  15.6%
CycleGAN 14.0% 120% 112% 11.9%
IcGAN 182% 109% 203%  20.3%

StarGAN  474% 61.5% 498% 52.2%

Table 2. AMT perceptual evaluation for ranking different models
on a multi-attribute transfer task. H: Hair color; G: Gender; A:
Aged.

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Input Disgusted Fearful Happy

Figure 7. Learned role of the mask vector. All images are gener-
ated by StarGAN-JNT. The last row shows the result of applying
the mask vector incorrectly.

Choi et al, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”
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Image Generation via Text

This flower has small, round violet
petals with a dark purple center

7L —
<

This flower has small, round violet .
petals with a dark purple center xr =

Discriminator Network

Generator Network

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding ¢(t) is used by both generator and discriminator. It is
projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

52
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Figure 2. The architecture of the proposed StackGAN. The Stage-I generator draws a low resolution image by sketching rough shape and
basic colors of the object from the given text and painting the background from a random noise vector. The Stage-II generator generates a
high resolution image with photo-realistic details by conditioning on both the Stage-I result and the text again.

Zhang et al, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks” ICCV 2017
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StackGAN - Motivation

e Many practical applications of generating images from text.
o Photo editing
o Computer-aided design

e Current state of the art fails to generate necessary details and vivid object
parts.

Zhang et al. “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks” ICCV 2017
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StackGAN - Introduction

e (Generating photo-realistic images is difficult.

e Training instability from higher resolutions - can’t simply add upsampling.

e Natural image distribution and implied model distribution might not overlap in
high dimensional pixel space.

e Contributions:

o StackGAN - generates 256x256 photorealistic images conditioned on text descriptions
o Novel conditional augmentation technique that increases diversity of produced images

55
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StackGAN - Related Work

Stable Training:
o L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial networks. In ICLR, 2017.

o T.Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans.

In NIPS, 2016.
o A.Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier gans. In ICML, 2017.
o M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. In ICLR, 2017.
o J.Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. In ICLR, 2017.
Conditional Image Generation
o X.Yan, J. Yang, K.Sohn, and H. Lee. Attribute2image:Conditional image generation from visual attributes. In ECCV,
2016.
o S.Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text-to-image synthesis. In
ICML, 2016.
Image Super-Resolution
o C. K. Snderby, J. Caballero, L.Theis, W. Shi, and F. Huszar. Amortised map inference for image super-resolution. In
ICLR, 2017.
o E.L.Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a laplacian pyramid of
adversarial networks. In NIPS, 2015.
Text Embedding
o S.Reed, Z. Akata, B. Schiele, and H. Lee. Learning deep representations of fine-grained visual descriptions. In CVPR,
2016.
Zhang et al. “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks” ICCV 2017
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StackGAN - Method

e 2-stage training process

e Stage-l GAN
o sketches the primitive shape and basic colors of the object conditioned on the given text
description

o draws the background layout from a random noise vector, yielding a low-resolution image

e Stage-ll GAN

o corrects defects in the low-resolution image from Stage-|
o completes details of the object by reading the text description again, producing a
high-resolution photo-realistic image.

Zhang et al, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks” ICCV 2017
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Conditional Augmentation

e Latent space for text embedding is extremely high dimensional (>100)
e Limited data causes discontinuity in latent data manifold
e Randomly sample conditioning variables from independent Gaussian

distribution where:
o Mean and diagonal covariance matrix are functions of the text embedding

e Enforce smoothness through regularization during training

Dy (N (p(et), Z(v:)) [|IN(0, 1)), (2)
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Stage-1 GAN

e Realimage |

e Text embedding phi
e Gaussian conditional variable c to capture the meaning of embedding with

variations

Lp, = ]E(IO>t)diata [log DO(I()a 9075)] o (3)
]Eszz,thdata [log(]‘ _ DO(GO(Z7 éO)? SOt))],

Loy = Einp, topaase 108(1 — Do(Go(2, 6), 1)) +

)\DKL(N(,“O(SOt)a ZO(SOt)) HN(Oa I))a (4)
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Stage-2 GAN

e Conditioning on output of first stage and text embedding
e Real 256x256 images input to the discriminator
e Randomness z not used, assumed to be preserved from previous output sO

ED = E(I,t)"\’pdata [log D(Iv (Pt)] +
IESONpGO,thdata [log(l o D(G(807 é)’ Spt))]’

EG — Es()wpco,twpdam [log(l - D(G(807 é)v <:Ot))] g
ADr (N (u(pr), B(ewr)) [IN(0, 1)),

S)

(6)
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Figure 2. The architecture of the proposed StackGAN. The Stage-I generator draws a low resolution image by sketching rough shape and
basic colors of the object from the given text and painting the background from a random noise vector. The Stage-II generator generates a
high resolution image with photo-realistic details by conditioning on both the Stage-I result and the text again.
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Z

The bird is A bird with a This small
Text This bird isted  short and medium orange  black bird has
descrivhi and brown in stubby with bill white body  a short, slightly
e color, with a yellow on its gray wings and  curved bill and
stubby beak body webbed feet long legs
64x64
GAN-INT-CLS
128x128
GAWWN
256x256
StackGAN

A small bird
with varying
shades of
brown with
white under the

eyes

A small yellow
bird with a
black crown
and a short
black pointed
beak

This small bird
has a white
breast, light
grey head, and
black wings
and tail

Figure 3. Example results by our StackGAN, GAWWN [ '], and GAN-INT-CLS [ ©] conditioned on text descriptions from CUB test set.
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This flower is
This flower has  pink, white,

Text a lot of small and yellow in
description purple petals in  color, and has
a dome-like petals that are

configuration striped

64x64
GAN-INT-CLS

256x256
StackGAN

Figure 4. Example results by our StackGAN and GAN-INT-CLS [

This flower has
petals that are
dark pink with
white edges
and pink
stamen

This flower is
white and
yellow in color,
with petals that
are wavy and
smooth

four columns) and COCO validation set (rightmost four columns).

A picture of a
very clean
living room

Zhang et al, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks” ICCV 2017

A group of
people on skis
stand in the
Snow

Eggs fruit
candy nuts
and meat
served on
white dish

!

A street sign
on a stoplight
pole in the
middle of a
day

] conditioned on text descriptions from Oxford-102 test set (leftmost
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Metric Dataset GAN-INT-CLS GAWWN Our StackGAN
Riception CUB 2.88 + .04 3.62 + .07 3.70 + .04
i Oxford 2.66 + .03 / 3.20 + .01
COCO 7.88 + .07 / 8.45 + .03
B CUB 2.81 £+ .03 1.99 + .04 1.37 4+ .02
it Oxford 1.87 £+ .03 / 1.13 + .03
COCO 1.89 £+ .04 / 1.11 + .03

Table 1. Inception scores and average human ranks of our Stack-
GAN, GAWWN [ ], and GAN-INT-CLS |
102, and MS-COCO datasets.

] on CUB, Oxford-
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Z

This bird is The bird has
This bird is This bird has A white bird white, black, small beak,
Text  blue with white ~ wings that are with a black and brown in with reddish
description and has a very brown and has crown and color, with a brown crown

short beak a yellow belly yellow beak brown beak and gray belly

".
: Y

Stage-I
images

Stage-11
images

This is a small,
black bird with
a white breast
and white on
the wingbars.

This bird is
white black and
yellow in color,
with a short
black beak

Figure 5. Samples generated by our StackGAN from unseen texts in CUB test set. Each column lists the text description, images generated

from the text by Stage-I and Stage-II of StackGAN.

hang et al, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks” ICCV 2017
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Generating Sequences

([ |nputS/OutputS (X 2,y S) = X
e (Generator

mqgn —Eynpyaiall0g Dy(Y)] — Ey g, log(l — Dg(Y))]

e Discriminator - RL objective

VoJ(0) =By, ,~col Y VoGo(ye|Yi:e—1) - ngb (Y1:6—1,9t)]
Yyt €Y

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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. 0-0-0-0-0 !
f’§ True data: ©-0-0-0-0
>0-0-0-0-0 !

’ . 0000 ;
Real World , 0000 | I .

' + Train

. —_—

, -0-0-0-90 .

G Generate: ©-0-0-0-0 .

»O0—-0—-0—-0-0O .

. 0-0-0-0-0 !
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Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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GAN Motivation - good for real data

e Two problems

e Struggles with generating sequences of discrete tokens
o Continuous data has a direct gradient

1 « .
Vo — Y _log(1 — D(G(z")))
m <
=1
o Slight changes from gradient do not have corresponding discrete tokens (e.g. "dog+.001")
e Score only evaluated by D after fully generated sequence

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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SeqGAN Problem Statement

Given a dataset of real-world structured sequences, train a theta-parameterized
generative model G to produce a sequence

Yir = W15--sYts---5Y7):Yt € Vs
Where Y is the vocabulary of candidate tokens.

Traditional Approach: Maximum Likelihood Estimation - exposure bias (trained on
data distribution but tested on model distribution - quickly accumulate error)

ma,xL Z Zlog[Go(yt|Y1:t—1)]

v |D| Yl:TED t

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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SegGAN Approach - GAN (Goodfellow)

e Generator G . -6-0-0-0 |
o Noise vector for entropy T e e e

o Generate real-looking data to fool discriminator Real World ._._._._.""' s
e Discriminator D . 00000 !
. 0-0-0-0-0 !
o  Output real value for P(real data) versus P(fake data) G Genork: ;
o [Essentially a classifier between real and fake . 0000 !

...............

e Minimax game:

m(%n mle)lx ]Emdiata(m) log D(x)] + | (2) log(1 — D(G(=))]

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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SegGAN Approach - Reinforcement Learning

e Generator G as an agent of RL - sequential decision making

e S:setofstatess € S - tokens generated so far

e Policy Go(y:|Y1.:—1)- determine the next token to generate given previous state
e Reward model is the discriminator D¢(Y1'7) = P(real)

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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Approach - RL Objective

e (Generator loss: Maximize expected reward

J(6) = E[Rrls0,0] = ) Ga(yilso) - QE: (s0, 1)
y1€Y

e Q-function is state-action value, which is how good it is for agent to take
action y (next possible token) at state s.

QCD;Z (CL — Y38 — YliT—l) — Dﬁb(YliT)'

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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Monte Carlo Tree Search (AlphaGo)

e Q only calculated for full sequence, use Monte Carlo tree search for intermediates (4)
G
{Yll:Ta e ayll:\g“} = MC ﬂ(lfl:t;N)

1 N n n G
Go =Y1.4+— — — Nanl D¢(Y1:T)7 YI:T = MC B<Y1:t;N) for t < ¥
QDd)(S b= { Dg(Y1:t) for t=T,

Algorithm:
Selection: start from root R and select successive child nodes down to a leaf node L.

Simulation: play a random playout from node C. This step is sometimes also called playout or rollout.
Backpropagation: use the result of the playout to update information in the nodes on the path from C to R.

Selection Expansion Simulation Backpropagation

& e® @ e8 @ “e®

/

OHEOD 60T ©QFOB
® e @: ® @

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017. o

Expansion: unless L ends the sequence, create one (or more) child nodes and choose node C from one of them.
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Training

e Generator - policy gradient to maximize long-term reward (8)

J(0) = E[Rr|s0,0] = > Go(yr]s0) - QP (s0,1)

y1 €Y

VgJ(o) = EZ:I EYI:!—-I"‘GS [ Zy VgGG(ytlyl:t—l) 5 Qgi (let—l’yt)]
yeE

ng, (e = yr,s = Yi.r—1) = Dy(Y1.1T).

0 0+ anVeJ(0)

e Discriminator - classification into two classes: real/fake, same as Goodfellow (5)

i ~Ex s 108 Do (¥)] — By~ [log(1 = Do (¥)))

e  Start with MLE to pretrain
e Train generator in g steps, then discriminator, alternating
Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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Algorithm 1 Sequence Generative Adversarial Nets

Require: generator policy Gy; roll-out policy GG3; discriminator

10:
11:
12:
I3:
14:
15:

16:
17:
18:
19:

0 O L i B I

D; a sequence dataset S = {X.7}
Initialize Gy, D4 with random weights 6, ¢.
Pre-train Gy using MLE on §
R
Generate negative samples using G for training D
Pre-train Dy via minimizing the cross entropy
repeat
for g-steps do
Generate a sequence Yi.7 = (y1,...,yr) ~ Go
fortinl:7Tdo
Compute Q(a = y¢; s = Yi.4—1) by Eq. (B)
end for
Update generator parameters via policy gradient Eq. (8)
end for
for d-steps do
Use current (G to generate negative examples and com-
bine with given positive examples S
Train discriminator D, for k epochs by Eq. (5)
end for
B+ 0
until SeqGAN converges

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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Models

e G -RNN with LSTM
e D-CNN

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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Experiments

Obama Speech Text Generation

* when he was told of this
extraordinary honor that he
was the most trusted man in
america

* but we also remember and
celebrate the journalism that
walter practiced a standard of
honesty and integrity and
responsibility to which so many
of you have committed your
careers. it's a standard that's a
little bit harder to find today

* iam honored to be here to pa
tribute to the life and times o
the man who chronicled our
time.

Human

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.

* istood here today i have one

and most important thing that
not on violence throughout the
horizon is OTHERS american
fire and OTHERS but we need
you are a strong source

for this business leadership will
remember now i can’t afford to
start with just the way our
european support for the right
thing to protect those american
story from the world and

i want to acknowledge you
were going to be an
outstanding job times for
student medical education and
warm the republicans who like
my times if he said is that
brought the

Machine
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* Chinese poem generation

MEEXE , RWPBEEF.

KPEERER , BN HELAT. ERTABIR |, B —TE,

BAXATHE | TUSZEE. EEHE , EesiT.

Human Machine

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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Table 2: Chinese poem generation performance comparison.

Algorithm | Human score | p-value | BLEU-2 | p-value

MLE 0.4165 0.6670 g
SeqGAN | 05356 | 00034 | g73g9 | <10
Real data 0.6011 0.746

Table 3: Obama political speech generation performance.
Algorithm | BLEU-3 | p-value | BLEU-4 | p-value
MLE 0.519 —6 0.416
SeqGAN | 0.556 I <107 | o427 ‘ 00001

Table 4: Music generation performance comparison.
Algorithm | BLEU-4 | p-value | MSE | p-value
MLE 0.9210 _e | 22.38
SeqGAN l 0.9406 ’ <107 | 20,62 | 000034

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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Oracle LSTM with N(0,1) as real distribution

Table 1: Sequence generation performance comparison. The
p-value is between SeqGAN and the baseline from T-test.

Algorithm | Random | MLE SS PG-BLEU | SeqGAN
NLL 10.310 9.038 8.985 8.946 8.736

pvalue | <107 | <107 | <107® | <10°°®

Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient® AAAI 2017.
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Discrete GAN - Rationale

e Similar to SeqGAN
e Back-propagation difficulties with discrete random variables
e Inherent instability of GAN training objective

Che et al, “MLE Augmented Discrete GAN”
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Approach

e Discrete problem - RL by using log(D) as reward

e Maximum likelihood along with discriminator as training signals
e Novel generator training objective that reduces variance

e Importance sampling to make objective trainable

Che et al, “MLE Augmented Discrete GAN”
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MLE Augmented Discrete GAN (MaliGAN)

Delayed copy of generator P (x)

e  Optimal discriminator property D(x) = "y

e ( target distribution for MLE = I—Lp,

e Llet rp(x) = 13()’&)
1 D
e Augmented target distribution: q(x) = Z0) 1= (l))(()x)p'(x) = %[)’(x)

e Regarding q as fixed, target to optimize is

La(0) = KL(g(x)||pe(x))
VL = E;[Vglogps(x)]

X : 1
e From importance sampling: VLg = Ep'[%vf) logpg(x) = EEW [7D(x) Vg log pg(x)]

m

V() ~ Z(% )V logpa(xs) = B({x:})

Che et al, “MLE Augmented Discrete GAN”
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Algorithm 1 MaliGAN

Require: A generator p with parameters 6.
A discriminator D(x) with parameters 6.

A baseline b. .
: for number of training iterations do

|
2:  for k steps do

3: Sample a minibatch of samples {xz};’; 1 from pyg.
4-

5

Sample a minibatch of samples {y; };~, from pq.
Update the parameter of discriminator by taking gradient
ascend of discriminator loss

Z[Ved log D(y:)] + Z[Ved log(1 — D(xi))]
6: end for

7:  Sample a minibatch of samples {x; };~; from pyg.
8:  Update the generator by applying gradient update

D Xz
Z S ro(a) OV logpe(xi)

9: end for

Che et al, “MLE Augmented Discrete GAN”
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Variance Reduction in MaliGAN

e MC Tree Search (similar to SeqGAN)
e Mixed MLE-Mali Training

m.n

7 ’D X Ni. <N
VLY & J —b)Vlogp >‘ X~
G ,;12'0% )V log po (x7}" [x;")

m

% ;ZZI’O a;|s;) = En(xi,;)

1=1 t=0

Che et al, “MLE Augmented Discrete GAN”
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Che et al, “MLE Augmented Discrete GAN”

Algorithm 2 Sequential MaliGAN with Mixed MLE
Training

Require: A generator p with parameters 6.
A discriminator D(x) with parameters 6.
Maximum sequence length 7, step size K.
A baseline b, sampling multiplicity m.
1: N=T
2: Optional: Pretrain model using pure MLE with some epochs.
3: for number of training iterations do

4 N=N-K

5:  for k steps do

6: Sample a minibatch of sequences {y; };~; from pq.

5 While keeping the first IV steps the same as {y;}i~,,
sample a minibatch of sequences {x;};~; from py from
time step V.

8: Update the discriminator by taking gradient ascend of
discriminator loss.

> [Veulog D(y:)] + > [V, log(1 — D(x;))]
9:  end for

10:  Sample a minibatch of sequences {x;}/~; from pq.

11:  For each sample x; with length larger than /N in the mini-
batch, clamp the generator to the first N words of s, and
freely run the model to generate m samples x; ;,7 =
1,---mtill the end of the sequence.

12:  Update the generator by applying the mixed MLE-Mali
gradient update

m,n

rp(Xi,;) SN|_<N

VLY ~ (=== —b)Viegpe(xi; [x7")

i=§=1 ZJ' b (Xi;) ’

1 m N o

b 135S e
i=1 t=0

13: end for
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Che et al, “MLE Augmented Discrete GAN”

Generator Loss Discriminator Loss

Loss
Loss

epoch epoch

Figure 1. The training loss of the generator (left) and the discrim-
inator (right) of MaliGAN on Discrete MNIST task.

N~ Vel

y
@
e
2
7
S
S

ANU~-0WNn
OO «w R Qe -y
s AL oy
abysLLe O
SN NINTO 2O
DL S
Qp Oy -L £ wd =0 W

e

Figure 2. Samples generated by REINFORCE-like model (left)
and by MaliGAN (right).
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Table 1. Experimental results on Poetry Generation task. The re-

sult of SeqGAN is directly taken from (Yu et al., 2017).

Poem-5 Poem-7
Model
BLEU-2 PPL BLEU-2 PPL
MLE 0.6934 564.1 0.3186 192.7
SeqGAN  0.7389 - - -
MaliGAN-basic 0.7406 548.6 0.4892 182.2
MaliGAN-full 0.7628 542.7 0.5526 180.2
:‘:l\ - ' P-ure .MLé ‘°°°: 'Pur-e MLE |
ol N\ MaliGAN-basic o MaliGAN-basic
£ 1\ MaliGAN-full £ MaliGAN-full
Bel g"
Eawl 1 | & =)\
\ [ ' \*' S AL T ‘
w & .=.»..‘-} X v o p— RPINCAY, \.4.‘."
- N engch 06 10 W3 o » - E— T '

epoch

Figure 3. Perplexity curves on Poem-5 (left) and Poem-7 (right).

Che et al, “MLE Augmented Discrete GAN”
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Table 2. Experimental results on PTB. Note that we evaluate the
models 1n sentence-level.

MLE MaliGAN-basic MaliGAN-full

Valid-Perplexity  141.9 131.6 128.0
Test-Perplexity  138.2 125.3 123.8
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et al, “Generating and designing DNA with deep generative models*”
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3D GAN



Reconstruction from lower dimensions

Transformation into higher dimension using data from lower dimension

(X:R,2) - X:R"

Protein synthesis
3D Scene reconstruction from 2D projection
Image super-resolution
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3D Generative Adversarial Network

=) Real?

A Discriminator

Real shape

Training on ShapeNet [Chang et al., 2015]
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Wou et al. “Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling” NIPS 2016



http://3dgan.csail.mit.edu/

=) [ | L
512x4x4x4

256XxX8x8x%8

lesxloxloxio 64X32X32X 32 i

G(z) in 3D Voxel Space
64x64x64

N

97
Wau et al. “Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling” NIPS 2016


http://3dgan.csail.mit.edu/
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PELRE R

Figure 1. Given a collection of 2D views of multiple objects, our
algorithm infers a generative model of the underlying 3D shapes.
100

Wou et al. “Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling



http://3dgan.csail.mit.edu/

Real 3D Scene

2D Scene Images
(Ground Truth)

— Camera —

Discriminative Model

Reconstructed 3D Scene

Real or Fake
Scene Images ?

2D Scene Images
(Fake Observations)

Iterative Fine-tuning Training v Iterative Fine-tuning Training
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Figure 2: Framework and workflow chart of 3D-Scene-GAN.
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Figure 1: Overview of our approach. We train a single generator against an array of discriminators,
each of which receives lower-dimensional projections—chosen randomly prior to training—as input.
Individually, these discriminators are unable to perfectly separate real and generated samples, and
thus provide stable gradients to the generator throughout training. In turn, by trying to fool all the
discriminators simultaneously, the generator learns to match the true full data distribution.
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Reconstruction from lower dimensions - AmbientGAN
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[ Dataset ]/
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Figure 1: AmbientGAN training. The output of the generator is passed through a simulated random
measurement function fg. The discriminator must decide if a measurement is real or generated.
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AmbientGAN - Introduction

e Problem: current GAN techniques require access to fully-observed samples.
e Fully observed samples are required for training but are expensive.
e Task: learn implicit generative model given only lossy measurements of

samples from the distribution of interest.
o Lossy measurements = noisy/distorted/incomplete samples

Bora et al, “AmbientGAN: Generative models from lossy measurements”, ICLR 2018
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Related Work

e David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilibrium
generative adversarial networks. 2017. Link

e Low dimensional projections of data:
o Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d shape induction from 2d views of
multiple objects. 2016. Link
o Behnam Neyshabur, Srinadh Bhojanapalli, and Ayan Chakrabarti. Stabilizing gan training with
multiple random projections. arXiv preprint arXiv:1705.07831, 2017. Link

e Maya Kabkab, Pouya Samangouei, Rama Chellappa. Task-Aware
Compressed Sensing with Generative Adversarial Networks. Link
e GAN (Goodfellow) and WGAN for objective function.

Bora et al, “AmbientGAN: Generative models from lossy measurements”, ICLR 2018
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Approach

Dataset
WY =Y.} =

¥

Figure 1: AmbientGAN training. The output of the generator is passed through a simulated random
measurement function fg. The discriminator must decide if a measurement is real or generated.

Bora et al, “AmbientGAN: Generative models from lossy measurements”, ICLR 2018
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Notation

Let:

't" denote real/true distribution,

‘e’ denote generated distributions,
'x" denote underlying space,

'y’ denote measurements (incomplete samples).
p.. be the real underlying distribution over R™.

Bora et al, “AmbientGAN: Generative models from lossy measurements”, ICLR 2018
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Approach

- Goal: learn a generator GG such that p? is close to pl.
- However, do not have access to X ~ p!,

Observe lossy measurements of size m performed on samples from p’. Assume
that we have a measurement function fg : R™ — R™. Thus measurements are
. . 24 _ 3 \ - . B . . - .. . . r
given by y = fg(x) and the distribution over the measurements is given by p;,.

If X ~p; and 6 ~ pg then Y = fo(X) ~ py.

Bora et al, “AmbientGAN: Generative models from lossy measurements”, ICLR 2018
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Assumptions:

- we have the measurement function fy(z) and pg
- easy to sample 0 ~ pg

- easy to compute fg(z) for any x and 6

Bora et al, “AmbientGAN: Generative models from lossy measurements”, ICLR 2018
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Approach

Steps:
- sample random measurement function fy
- X9=G(Z) ~pd
. m 10fF < 1 1 . . nt . - ,
- D : R™ — R predicts if y is real from pj or generated from pj

ngn mgx Eyr,\,p; [q(D(YT))] + Ez~p,,0~pe lq(1 = D(fe(G(Z))))]

q(z) = log(x) for GAN
g(z) = = for WGAN

Bora et al, “AmbientGAN: Generative models from lossy measurements”, ICLR 2018
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Model Architectures

e Conditional DCGAN
e Unconditional WGAN with gradient penalty
e Goodfellow GAN

Bora et al, “AmbientGAN: Generative models from lossy measurements”, ICLR 2018
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Theoretical Results

The mapping of distributions of samples p! to distribution of measurements
p;, is invertible even though the map from individual image x to its measure-

ment fg(z) is not.

Bora et al, “AmbientGAN: Generative models from lossy measurements”, ICLR 2018
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Figure 2: (Left) Samples of lossy measurements used for training. Samples produced by (middle) a
baseline that trains from inpainted images, and (right) our model.
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(b) Samples produced by our model trained from two
1D projections of each image. On left, the training data
does not include the angle of the projections, so it can-
not identify orientation or chirality. On right, the train-
ing data includes the angle.

Each
image is a blurred noisy version of the original.
Samples produced by (middle) a baseline that uses
Wiener deconvolution, and (right) our model.

Figure 3: Results with Convolve+Noise on celebA (left) and 1D-projections on MNIST (right).

Bora et al, “AmbientGAN: Generative models from lossy measurements”, ICLR 2018
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Figure 4: Results with Block-Pixels on celebA. (left) Samples of lossy measurements. Each pixel is
blocked independently with probability p = 0.95. Samples produced by (middle) unmeasure-blur

baseline, and (right) our model.

(a) (left) Samples of lossy measurements. All except a randomly cho-
sen 32 x 32 patch is set to zero. (right) Samples produced by our model.

(b) Samples produced by our
model with Pad-Rotate-Project-0
measurements.

Figure 5: Results on celebA with (a) Keep-Patch, and (b) 1D projections.

Bora et al. “AmbientGAN: Generative models from lossy measurements”. ICLR 2018
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Figure 6: Results with Block-Pixels on CIFAR-10. (left) Samples of lossy measurements. Each pixel
is blocked independently with probability p = 0.8. Samples produced by (middle) unmeasure-blur
baseline, and (right) our model.

Bora et al. “AmbientGAN: Generative models from lossy measurements”. ICLR 2018
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Progressive Growing Generative Adversarial Nets

Faster, more stable training methodology through progressive growing
Image generation with unprecedented quality

Propose simple way to increase variation in generated images

Training tips for discouraging unhealthy competition between generator and
discriminator

e Provide a new way of evaluating GAN results
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Karas et al. “Progressive Growing of GANs for Improved Quality, Stability, and Variation”
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ideo

118


http://www.youtube.com/watch?v=G06dEcZ-QTg
https://www.youtube.com/watch?v=G06dEcZ-QTg&feature=youtu.be

Progressive GAN - Previous Problems

e Gradient instability

e Higher resolution makes generated images easier to tell apart from training
images

e Memory constraints on higher resolutions

Karas et al. “Progressive Growing of GANs for Improved Quality, Stability, and Variation”
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Progressive GAN - Related Work

o Generating high-resolution images

(@)

Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement
networks. CoRR, abs/1707.09405, 2017. Link

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier GANs. In ICML, 2017. Link

e Growing GANs progressively

@)

(@)

Zhou Wang, Eero P. Simoncelli, and Alan C. Bovik. Multi-scale structural similarity for image
quality assessment. In Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers, pp.
1398-1402, 2003. Link

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, and
Dimitris N. Metaxas. StackGAN: text to photo-realistic image synthesis with stacked
generative adversarial networks. In ICCV, 2017. Link

Arnab Ghosh, Viveka Kulharia, Vinay P. Namboodiri, Philip H. S. Torr, and Puneet Kumar

Dokania. Multi-agent diverse generative adversarial networks. CoRR, abs/1704.02906, 2017.

Link
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https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/1704.02906

Progressive GAN - Related Work Continued

e Solving gradient problems
o Ishaan Gulrajani, Faruk Ahmed, Mart in Arjovsky, Vincent Dumoulin, and Aaron C. Courville.
Improved training of Wasserstein GANs. CoRR, abs/1704.00028, 2017. Link
o Martin Arjovsky and Leon Bottou. Towards principled methods for training generative
adversarial “ networks. In ICLR, 2017. Link
e Measuring GAN performance
o Tim Salimans, lan J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi
Chen. Improved techniques for training GANs. In NIPS, 2016. Link
o MS-SSIM: Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image
synthesis with auxiliary classifier GANs. In ICML, 2017. Link
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Progressive GAN - Method

Start with low-resolution images
Progressively increase resolution by adding network layers
Learn high level structure first, then detail

Benefits:
o Reduced training time
o  Substantially more stable training, especially early with smaller images
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Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here | N x N | refers to convolutional layers operating on N x NN spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.
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Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the
new layers smoothly. This example illustrates the transition from 16 x 16 images (a) to 32 x 32
images (c). During the transition (b) we treat the layers that operate on the higher resolution like a
residual block, whose weight v increases linearly from O to 1. Here | 2
and halving the image resolution using nearest neighbor filtering and average pooling, respectively.

represents a layer that projects feature vectors to RGB colors and
the reverse; both use 1 x 1 convolutions. When training the discriminator, we feed in real images
that are downscaled to match the current resolution of the network. During a resolution transition,
we interpolate between two resolutions of the real images, similarly to how the generator output
combines two resolutions.
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CELEBA LSUN BEDROOM

Training configuration Sliced Wasserstein distance x 10* | MS-SSIM | Sliced Wasserstein distance x10* | MS-SSIM
12860 64 32 16 Avg 128 64 32 16 Avg

(a) Gulrajani et al. (2017) 1299 779 7.62 873 928 | 0.2854 | 11.97 1051 8.03 1448 11.25 | 0.0587

(b) + Progressive growing 462 264 378 6.06 428 0.2838 7.09 627 740 964 7.60 0.0615

(¢) + Small minibatch 7542 41.33 41.62 26.57 46.23 0.4065 72,73 40.16 4275 42.46 49.52 0.1061

(d) + Revised training parameters | 9.20 6.53 4.71 11.84 8.07 0.3027 739 551 365 963 6.54 0.0662
(e*) + Minibatch discrimination 10.76 628 6.04 1629 9.84 0.3057 1029 622 532 11.88 8.43 0.0648

(e)  Minibatch stddev 1394 567 282 571 7.04 | 0.2950 777 523 327 9.64 648 | 00671
(f) + Equalized learning rate 442 328 232 752 439 | 02902 361 332 271 644 402 | 0.0668
(g) + Pixelwise normalization 4.06 3.04 202 513 356 | 02845 389 3.05 324 587 4.01 0.0640
(h) Converged 242 217 224 499 296 | 0.2828 347 2,60 230 487 331 0.0636

Table 1: Sliced Wasserstein distance (SWD) between the generated and training images (Section 5)
and multi-scale structural similarity (MS-SSIM) among the generated images for several training
setups at 128 x 128. For SWD, each column represents one level of the Laplacian pyramid, and the
last one gives an average of the four distances.

(a) (b) (c) (d) (ex) (e) (h) Converged
Figure 3: (a) — (g) CELEBA examples corresponding to rows in Table 1. These are intentionally
non-converged. (h) Our converged result. Notice that some images show aliasing and some are not
sharp — this is a flaw of the dataset, which the model learns to replicate faithfully.

Karas et al. “Progressive Growing of GANs for Improved Quality, Stability, and Variation”
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Figure 4: Effect of progressive growing on training speed and convergence. The timings were
measured on a single-GPU setup using NVIDIA Tesla P100. (a) Statistical similarity with respect
to wall clock time for Gulrajani et al. (2017) using CELEBA at 128 x 128 resolution. Each graph
represents sliced Wasserstein distance on one level of the Laplacian pyramid, and the vertical line
indicates the point where we stop the training in Table 1. (b) Same graph with progressive growing
enabled. The dashed vertical lines indicate points where we double the resolution of G and D. (¢)
Effect of progressive growing on the raw training speed in 1024 x 1024 resolution.
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Progressive GAN - Increasing Variation

e Minibatch standard deviation

e Compute the standard deviation for each feature in each spatial location over
the minibatch

e Create a constant feature map using the average of these estimates

e Allows the discriminator to use these statistics internally, encourages
minibatches to show similar statistics
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Generator Act. Output shape Params Discriminator Act. QOutput shape Params

Latent vector - S12x 1 X 1 - Input image - 3 x 1024 x 1024 -
Convd x 4 LReLU 512 x 4 4 4.2M Conv1 x 1 LReLU 16 x 1024 x 1024 64
Conv 3 x 3 LReLU 512x 4 4 2.4M Conv3 x 3 LReLU 16 x 1024 x 1024 2.3k
Upsample - 512x 8 8 - Conv3 x 3 LReLU 32 x 1024 x 1024 4.6k
Conv3 x 3 LReLU 512 x 8 8 2.4M Downsample - 32 x 512 x 512 -
Conv 3 x 3 LReLU 512x 8 8 2.4M Conv3 x 3 LReLU 32 x 512 x 512 9.2k
Upsample - 512 x 16 16 - Conv3 x 3 LReLU 64 x 512 x 512 18k
Conv3 x 3 LReLU 512 x 16 16 2.4M Downsample - 64 x 256 x 256 -
Conv 3 x 3 LReLU 512 x 16 16 2.4M Conv3 x 3 LReLU 64 X 256 x 256 37k

- Conv3d x 3 LReLU 128 x 256 256 74k
32 2.4M Downsample - 128 x 128
32 2.4M Conv3d x 3 LReLU 128 x 128
- Conv3 x 3 LReLU 256 x 128
64 1.2M Downsample - 256 x 64

64 590k Conv3 x 3 LReLU 256 X 64

Upsample - 512 x 32
Conv3 x 3 LReLU 512 x 32
Conv3 x 3 LReLU 512 x 32
Upsample ~ 512 x 64
Conv3 x 3 LReLU 256 x 64
Conv3 x 3 LReLU 256 x 64

128 148k
128 295k

64 590k

X XX X XX X XX X X|X X XX X X|X X XX X

X

X

X

X

X

X

X

X

X

X
Upsample - 256 x 128 128 - Conv3 x 3 LReLU 512 x 64 x 64 1.2M
Conv3 x 3 LReLU 128 x 128 128 295k Downsample - 512X 32 X %2 -
Conv 3 x 3 LReLU 128 x 128 x 128 148k Conv3 x 3 LReLU 512 x 32 x 32 2.4M
Upsample - 128 x 256 x 256 - Conv3 x 3 LReLU 512 x 32 x 32 2.4M
Conv3 x 3 LReLU 64 x 256 x 256 74k Downsample - 512x 16 x 16 -
Conv3 x 3 LReLU 64 X 256 x 256 37k Conv3 x 3 LReLU 512x 16 x 16 2.4M
Upsample B 64 x 512 x 512 - Conv3 x 3 LReLU 512x 16 x 16 2.4M
Conv3 x 3 LReLU 32 x 512 x 512 18k Downsample - 512x 8 x 8 -
Conv 3 x 3 LReLU 32 x 512 x 512 9.2k Conv3 x 3 LReLU 512x 8 x 8 2.4M
Upsample - 32 x 1024 x 1024 - Conv3 x 3 LReLU 512x 8 x 8 2.4M
Conv3 x 3 LReLU 16 x 1024 x 1024 4.6k Downsample - S12.% 4 X :4 -
Conv3 x 3 LReLU 16 x 1024 x 1024 2.3k Minibatch stddev - 513x 4 x 4 -
Conv1 x 1 linear 3 x 1024 x 1024 51 Conv3 x 3 LReLU 512x 4 x 4 2.4M
Total trainable parameters 23.1M Convd x 4 LReLU 512x 1 x 1 4.2M
Fully-connected linear 3 O O | 513
Total trainable parameters 23.1M

Table 2: Generator and discriminator that we use with CELEBA-HQ to generate 1024 x 1024 images.
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Progressive GAN - Example Training Configuration

e Start with 4x4 resolution, train with 800k real images

e Then alternate:
o Fade in the first 3-later block for the next 800k images
o Stabilize with 800k images

e Upsampling with 2x2 pixel replication
e Downsampling with average pooling
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Generator Act. Output shape Params Discriminator Act. Output shape Params

Latent vector - S12x 1 1 - Input image - 3 x 1024 x 1024 -
Convd x 4 LReLU 512 x 4 4 4.2M Convl x1 LReLU 16 x 1024 x 1024 64
Conv 3 x 3 LReLU 512 x 4 A 2.4M Conv3 x 3 LReLU 16 x 1024 x 1024 2.3k
Upsample - 512x 8 8 - Conv3d x 3 LReLU 32 x 1024 x 1024 4.6k
Conv3 x 3 LReLU 512 x 8 8 2.4M Downsample - 32 x 512 x 512 -
Conv 3 x 3 LReLU 512 x 8 8 2.4M Conv3 x 3 LReLU 32 x 512 x 512 9.2k
Upsample - 512 x 16 16 - Conv3 x 3 LReLU 64 x 512 x 512 18k
Conv3 x 3 LReLU 512 x 16 16 2.4M Downsample - 64 x 256 x 256 =i}
Conv 3 x 3 LReLU 512 x 16 16 2.4M Conv3 x 3 LReLU 64 x 256 x 256 37k

256 74k
128 =
128 148k |
128 295k

- Conv3d x 3 LReLU 128 x 256
32 2.4M Downsample - 128 x 128
2.4M Conv3 x 3 LReLU 128 x 128
- Conv3 x 3 LReLU 256 x 128
64 1.2M Downsample - 256 x 64
64 590k Conv3d x 3 LReLU 256 x 64
- Conv3 x 3 LReLU 512 x 64
128 295k Downsample - 512 x 32

Upsample - 512 x 32
Conv3 x 3 LReLU 512 x 32
Conv 3 x 3 LReLU 512 x 32
Upsample - 512 x 64
Conv3 x 3 LReLU 256 x 64
Conv3 x 3 LReLU 256 x 64
Upsample - 256 x 128
Conv3 x 3 LReLU 128 x 128

64 590k
64 1.2M

2.4M

XX XX X XX X XX X XX X XX X X|X X X|X XX
w
L]

XXX XIX XXX XXX XXX X XX X XIXXX|X XX
w
L]

Conv 3 x 3 LReLU 128 x 128 128 148k Conv3 x 3 LReLU 512 x 32
Upsample - 128 x 256 x 256 - Conv3 x 3 LReLU 512 x 32 32 2.4M
Conv3 x 3 LReLU 64 x 256 x 256 74k Downsample - 512 x 16 16 -
Conv 3 x 3 LReLU 64 x 256 x 256 37k Conv3 x 3 LReLU 512 x 16 16 2.4M
Upsample - 64 x 512 x 512 - Conv3 x 3 LReLU 512 x 16 16 2.4M
Conv3 x 3 LReLU 32 x 512 x 512 18k Downsample - 512x 8 8 -
Conv 3 x 3 LReLU 32 x 512 x 512 9.2k Conv3 x 3 LReLU 512 x 8 8 2.4M
Upsample - 32 x 1024 x 1024 - Conv3 x 3 LReLU 512 x 8 8 2.4M
Conv3 x 3 LReLU 16 x 1024 x 1024 4.6k Downsample - 512x 4 4 -
Conv 3 x 3 LReLU 16 x 1024 x 1024 2.3k Minibatch stddev - S13x 4 4 -
Conv1 x1 linear 3 x 1024 x 1024 51 Conv3 x 3 LReLU 512 x 4 4 2.4M
Total trainable parameters 23.1M Convd x 4 LReLU 512 x 1 1 4.2M
Fully-connected linear E 1 513
Total trainable parameters 23.1M

Table 2: Generator and discriminator that we use with CELEBA-HQ to generate 1024 x 1024 images.
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Pixel Replication

nxXn

n: Resample factor

w, —4 pixels

Iy —4 pixels E

hy — Bpixels

w, — 8pixels
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Progressive GAN - Results

e CIFAR10 Inception Score: 8.80
e High quality images from different LSUN categories
e Able to generate 1024x1024 images from CelebA-HQ
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POTTEDPLANT HORSE SOFA BUS CHURCHOUTDOOR BICYCLE TVMONITOR

Figure 7: Selection of 256 x 256 images generated from different LSUN categories.
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-

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a

larger set of results, and the accompanying video for latent space interpolations.
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