Weaver: Deep Co-Encoding of Questions and Documents for Machine Reading (2018) Martin Raison¹, Pierre-Emmanuel Mazaré¹, Rajarshi Das², Antoine Bordes¹

Presenter: Derrick Blakely

Department of Computer Science, University of Virginia https://qdata.github.io/deep2Read/

Roadmap

- 1. Background
- 2. Motivation
- 3. About Weaver
- 4. Results
- 5. Conclusions/Takeaways

Roadmap

- 1. Background
- 2. Motivation
- 3. About Weaver
- 4. Results
- 5. Conclusions/Takeaways

• Jason Weston: "far off goal" is creating intelligent dialog agents

- Jason Weston: "far off goal" is creating intelligent dialog agents
- Requirements: long and short-term knowledge, reasoning ability, not too much supervision, transfer, efficiency

- Jason Weston: "far off goal" is creating intelligent dialog agents
- Requirements: long and short-term knowledge, reasoning ability, not too much supervision, transfer, efficiency
- Richard Socher: "Can we frame all of NLP as QA?"

- Jason Weston: "far off goal" is creating intelligent dialog agents
- Requirements: long and short-term knowledge, reasoning ability, not too much supervision, transfer, efficiency
- Richard Socher: "Can we frame all of NLP as QA?"
- Can we avoid imposing too much structure?

bAbl (Weston et al, 2015)

Task 1: Single Supporting Fact

Mary went to the bathroom. John moved to the hallway. Mary travelled to the office. Where is Mary? A:office

Task 2: Two Supporting Facts

John is in the playground. John picked up the football. Bob went to the kitchen. Where is the football? A:playground

bAbl (Weston et al, 2015)

Task 1: Single Supporting Fact

Mary went to the bathroom. John moved to the hallway. Mary travelled to the office. Where is Mary? A:office Task 2: Two Supporting Facts

John is in the playground. John picked up the football. Bob went to the kitchen. Where is the football? A:playground

• 6 dialog tasks, 20 QA tasks

bAbl (Weston et al, 2015)

Task 1: Single Supporting Fact

Mary went to the bathroom. John moved to the hallway. Mary travelled to the office. Where is Mary? A:office

Task 2: Two Supporting Facts

John is in the playground. John picked up the football. Bob went to the kitchen. Where is the football? A:playground

- 6 dialog tasks, 20 QA tasks
- Good collection--necessary (but not sufficient) for dialog

Article: Endangered Species Act Paragraph: "... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?" **Plausible Answer:** *later laws*

Question 2: "What was the name of the 1937 treaty?" **Plausible Answer:** *Bald Eagle Protection Act*

• 87K questions

Article: Endangered Species Act Paragraph: "... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?" **Plausible Answer:** *later laws*

Question 2: "What was the name of the 1937 treaty?" Plausible Answer: *Bald Eagle Protection Act*

- 87K questions
- More organic than bAbl

Article: Endangered Species Act Paragraph: "... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?" **Plausible Answer:** *later laws*

Question 2: "What was the name of the 1937 treaty?" Plausible Answer: *Bald Eagle Protection Act*

- 87K questions
- More organic than bAbl
- Focus of intensive effort

Article: Endangered Species Act Paragraph: "... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?" Plausible Answer: *later laws*

Question 2: "What was the name of the 1937 treaty?" Plausible Answer: *Bald Eagle Protection Act*

- 87K questions
- More organic than bAbl
- Focus of intensive effort
- Some very accurate (and complex) models have beat human performance

Article: Endangered Species Act Paragraph: "... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?" Plausible Answer: *later laws*

Question 2: "What was the name of the 1937 treaty?" **Plausible Answer:** *Bald Eagle Protection Act*

$$P(w_1,\ldots,w_m) = \prod_{i=1}^m P(w_i \mid w_1,\ldots,w_{i-1}) pprox \prod_{i=1}^m P(w_i \mid w_{i-(n-1)},\ldots,w_{i-1})$$

$$P(w_1,\ldots,w_m) = \prod_{i=1}^m P(w_i \mid w_1,\ldots,w_{i-1}) pprox \prod_{i=1}^m P(w_i \mid w_{i-(n-1)},\ldots,w_{i-1})$$

• Language modeling: requires n-gram counts

$$P(w_1,\ldots,w_m) = \prod_{i=1}^m P(w_i \mid w_1,\ldots,w_{i-1}) pprox \prod_{i=1}^m P(w_i \mid w_{i-(n-1)},\ldots,w_{i-1})$$

- Language modeling: requires n-gram counts
- Hard to handle long-range dependencies

$$P(w_1,\ldots,w_m) = \prod_{i=1}^m P(w_i \mid w_1,\ldots,w_{i-1}) pprox \prod_{i=1}^m P(w_i \mid w_{i-(n-1)},\ldots,w_{i-1})$$

- Language modeling: requires n-gram counts
- Hard to handle long-range dependencies
- Requires explicitly structuring text data via knowledge bases (e.g., WikiData or DBpedia)

• Can be used to create a language model

- Can be used to create a language model
- Can be used to encode questions and contexts

- Can be used to create a language model
- Can be used to encode questions and contexts
- Gradient problem and better dependency modeling → GRU's and LSTM's

- Can be used to create a language model
- Can be used to encode questions and contexts
- Gradient problem and better dependency modeling → GRU's and LSTM's
- LSTM's alone still inadequate for long-range encoding and reasoning

• "IGOR" model

- "IGOR" model
- I: convert data to a feature representation

- "IGOR" model
- I: convert data to a feature representation
- G (generalization): update memory given new input

- "IGOR" model
- I: convert data to a feature representation
- G (generalization): update memory given new input
- O (output): use existing memories to produce new output

- "IGOR" model
- I: convert data to a feature representation
- G (generalization): update memory given new input
- O (output): use existing memories to produce new output
 - Find the relevant memory cells using some matching function (they use q^TU^TUd)

- "IGOR" model
- I: convert data to a feature representation
- G (generalization): update memory given new input
- O (output): use existing memories to produce new output
 - Find the relevant memory cells using some matching function (they use q^TU^TUd)
 - \circ $\,$ Typically involves a 2 hops

- "IGOR" model
- I: convert data to a feature representation
- G (generalization): update memory given new input
- O (output): use existing memories to produce new output
 - Find the relevant memory cells using some matching function (they use q^TU^TUd)
 - Typically involves a 2 hops
- R (response): get the actual text answer

Dynamic Memory Networks (Socher et al, 2015)

Post-2015 Architectures

• Ideas from MemoryNets and DMN's always used

Post-2015 Architectures

- Ideas from MemoryNets and DMN's always used
- GRU's and LSTM's (typically bidirectional) always used
- Ideas from MemoryNets and DMN's always used
- GRU's and LSTM's (typically bidirectional) always used
- Attention mechanism sprinkled liberally

- Ideas from MemoryNets and DMN's always used
- GRU's and LSTM's (typically bidirectional) always used
- Attention mechanism sprinkled liberally
- Performance on bAbl and SQuAD have been great

- Ideas from MemoryNets and DMN's always used
- GRU's and LSTM's (typically bidirectional) always used
- Attention mechanism sprinkled liberally
- Performance on bAbl and SQuAD have been great
- Models super specialized for these select tasks

- Ideas from MemoryNets and DMN's always used
- GRU's and LSTM's (typically bidirectional) always used
- Attention mechanism sprinkled liberally
- Performance on bAbl and SQuAD have been great
- Models super specialized for these select tasks
- Performance degrades as the context grows

Roadmap

- 1. Background
- 2. Motivation
- 3. About Weaver
- 4. Results
- 5. Conclusions/Takeaways

Roadmap

- 1. Background
- 2. Motivation
- 3. About Weaver
- 4. Results
- 5. Conclusions/Takeaways

• Far-off goal: intelligent dialog agents

- Far-off goal: intelligent dialog agents
- Generalizable models (especially if most of NLP can be cast into a QA problem)

- Far-off goal: intelligent dialog agents
- Generalizable models (especially if most of NLP can be cast into a QA problem)
- Avoid using too much attention

- Far-off goal: intelligent dialog agents
- Generalizable models (especially if most of NLP can be cast into a QA problem)
- Avoid using too much attention
- Models aren't working well with longer contexts

Roadmap

- 1. Background
- 2. Motivation
- 3. About Weaver
- 4. Results
- 5. Conclusions/Takeaways

Roadmap

- 1. Background
- 2. Motivation
- 3. About Weaver
- 4. Results
- 5. Conclusions/Takeaways

1. Input word embedding with fastText trained on a large corpus

1. Input word embedding with fastText trained on a large corpus

2. Context and question co-encoding

1. Input word embedding with fastText trained on a large corpus

2. Context and question co-encoding

3. Memory network step

1. Input word embedding with fastText trained on a large corpus

2. Context and question co-encoding

3. Memory network step

4. Final answer prediction

Embedding

• Question:

$$[q_1, q_2, ..., q_m]$$

• Content:

$$[c_1, c_2, ..., c_n]$$

• Coordinate map:

$$f:(q_i,c_j) \rightarrow [q_i || c_j]$$

• Coordinate map:

$$f:(q_i,c_j) \rightarrow [q_i || c_j]$$

• What they actually do:

$$f:(q_i,c_j,c_j^{extra}) \rightarrow [q_i||q_i - c_j||q_i^T c_j||c_j^{extra}]$$

1. Slice in the "context direction" \rightarrow n slices of size m x d

1. Slice in the "context direction" \rightarrow n slices of size m x d

2. Feed each slice into BiLSTM \rightarrow obtain M₁ (n slices of size m x 2h)

- 1. Slice in the "context direction" \rightarrow n slices of size m x d
- Feed each slice into BiLSTM → obtain M₁ (n slices of size m x
 2h)
- 3. Slice M_1 in the "question direction"

1. Slice in the "context direction" \rightarrow n slices of size m x d

2. Feed each slice into BiLSTM → obtain M₁ (n slices of size m x
2h)

- 3. Slice M_1 in the "question direction"
- 4. Feed each slice into (new) BiLSTM → obtain M₂

1. Slice in the "context direction" \rightarrow n slices of size m x d

2. Feed each slice into BiLSTM → obtain M₁ (n slices of size m x
2h)

- 3. Slice M_1 in the "question direction"
- 4. Feed each slice into (new) BiLSTM → obtain M₂
- 5. Repeat

• Co-encoding outputs *can* be used directly, but using a memory network was better

- Co-encoding outputs *can* be used directly, but using a memory network was better
- Similar to end-to-end MemNets (Sukhbaatar et al, 2015) and DMN's

- Co-encoding outputs *can* be used directly, but using a memory network was better
- Similar to end-to-end MemNets (Sukhbaatar et al, 2015) and DMN's
- Uses *T* hops and attention

- Co-encoding outputs *can* be used directly, but using a memory network was better
- Similar to end-to-end MemNets (Sukhbaatar et al, 2015) and DMN's
- Uses *T* hops and attention

$$\mathbf{x}_{t} = \mathbf{C}^{h} \mathbf{W}^{c} \operatorname{softmax}(\mathbf{C}^{h} \mathbf{W}^{h} \mathbf{s}_{t})$$
$$\mathbf{s}_{t+1} = \mathbf{GRU}(\mathbf{x}_{t}, \mathbf{s}_{t})$$

Answer Prediction

• Softmax to predict indices for start and end of the answer

$$\mathbf{p}^{s} = \operatorname{softmax}(\mathbf{C}^{h}\mathbf{W}^{s}\mathbf{s}_{T})$$

 $\mathbf{p}^{e} = \operatorname{softmax}(\mathbf{C}^{h}\mathbf{W}^{e}\mathbf{s}_{T})$

Answer Prediction

• Softmax to predict indices for start and end of the answer

$$\mathbf{p}^{s} = \operatorname{softmax}(\mathbf{C}^{h}\mathbf{W}^{s}\mathbf{s}_{T})$$

 $\mathbf{p}^{e} = \operatorname{softmax}(\mathbf{C}^{h}\mathbf{W}^{e}\mathbf{s}_{T})$

$$\mathbf{p}_i^s \mathbf{p}_j^e$$
 for $i \le j \le i+15$

Roadmap

- 1. Background
- 2. Motivation
- 3. About Weaver
- 4. Results
- 5. Conclusions/Takeaways

Roadmap

- 1. Background
- 2. Motivation
- 3. About Weaver
- 4. Results
- 5. Conclusions/Takeaways

Results

- BAbl solves 17 out of 20 tasks (though they don't count two of the ones Weaver couldn't do)
- SQuAD (normal):

	Dev set		Test set	
	EM	F1	EM	F1
DrQA	69.5	78.8	70.7	79.3
Conductor-net	72.1	81.4	72.6	81.4
M-Reader+RL	72.1	81.6	73.2	81.8
DCN+	74.5	83.1	75.1	83.1
FusionNet	75.3	83.6	76.0	83.9
SAN	76.2	84.1	76.8	84.4
Weaver	74.1	82.4	74.4	82.8
Results

- BAbl solves 17 out of 20 tasks (though they don't count two of the ones Weaver couldn't do)
- SQuAD (document-level):

	Train	Test	EM	F 1
DrQA	paragraph	full doc.	49.4	58.0
DrQA*	paragraph	full doc.	59.1	67.0
$DrQA^{\star}$	full doc.	full doc.	64.7	73.2
Weaver	paragraph	full doc.	60.6	69.7
Weaver	full doc.	full doc.	67.0	75.9

Results - All of English Wikipedia

		SQuAD	CuratedTREC	WebQuestions	WikiMovies
YodaQA	- addtl sources	-	31.3	39.8	-
DrQA	- SQuAD train	27.1	19.7	11.8	24.5
	- fine-tuning	28.4	25.7	19.5	34.3
DrQA*	- SQuAD train	39.5	21.3	14.2	31.9
	- fine-tuning	40.4	28.8	24.3	46.0
Reinf. reader-ranker	- fine-tuning	29.1	28.4	17.1	38.8
Weaver	- SQuAD train	42.3	21.3	13.0	33.6
	- fine-tuning	-	37.9	23.7	43.9

Roadmap

- 1. Background
- 2. Motivation
- 3. About Weaver
- 4. Results
- 5. Conclusions/Takeaways

Roadmap

- 1. Background
- 2. Motivation
- 3. About Weaver
- 4. Results
- 5. Conclusions/Takeaways

• First step for architectures needs to be a traditional IR module

- First step for architectures needs to be a traditional IR module
- Clever use of LSTM's reduces the need for attention

- First step for architectures needs to be a traditional IR module
- Clever use of LSTM's reduces the need for attention
- Learning good representations for questions and contexts is where a lot of effort is going

- First step for architectures needs to be a traditional IR module
- Clever use of LSTM's reduces the need for attention
- Learning good representations for questions and contexts is where a lot of effort is going
- Iterative attention mechanisms still important for QA tasks

- First step for architectures needs to be a traditional IR module
- Clever use of LSTM's reduces the need for attention
- Learning good representations for questions and contexts is where a lot of effort is going
- Iterative attention mechanisms still important for QA tasks
- Still helpful to manually add in NLP features like NER and POS taggings

Questions?

Dynamic Memory Networks (Socher et al, 2015)

- Multiple passes used in the "Episodic memory module" to agglomerate the m vectors
 - Reminiscent of bootstrapping--after a pass, it's more confident about which parts of the input sequence matter
 - After multiple passes, model can get a more "global perspective"
- GRU's often used instead of LSTM's--same performance for encoding tasks but GRU's have fewer parameters, so they're often used instead of LSTMs
- Also interesting: Socher et al obtained good results by piping in image encodings instead of word vectors
- Dynamic Co-attention networks developed soon afterwards