Summary of NIPS (2012-2015) Embedding Papers

Muthu Chidambaram

Department of Computer Science, University of Virginia

https://gdata.qgithub.io/deep2Read/



https://qdata.github.io/deep2Read/

Topic-Partitioned Multinetwork Embeddings (2012)

e Authors: Peter Krafft, Juston Moore, Bruce Desmarais,
Hanna M. Wallach

e Paper proposes Bayesian admixture model for analyzing
communication networks

e Focuses specifically on email networks

e Goal is to find/summarize topic-specific subnetworks 1in
email networks



Topic Partitioned Multinetwork Encodings (2012)

e Proposes unified network identification and visualization
model
e Uses latent Dirichlet allocation (LDA) to find topics for

networks
o Topics are distributions over words

e Models network substructure using latent space model
(LSM)



Topic Partitioned Multinetwork Encodings (2012)

e Defines representation for emails
o Words, Topics, Actors, Recipients

e Communication patterns: matrix of probabilities of actor
X sending an email with topic t and including actor y as
a recipient

e Emails are modeled as a Dirichlet distribution over
topics



Topic Partitioned Multinetwork Embeddings (2012)

e Discusses sampling methods for latent variables
o Topic assignment

e New Hanover County email dataset used as opposed to
classic Enron dataset



Topic Partitioned Multinetwork Embeddings (2012)

e 30,909 total emails in dataset

e Used model to predict recipients of “test” emails
o Compared to baseline model that employed simple global statistics
(proportion of emails sent from actor X to Y)
o Also compared model against variant of model using Beta distribution
o Also compared to existed network models



Topic Partitioned Multinetwork Embeddings (2012)

Model provided better link prediction results than the
other models it was compared to

Compared topic coherence from model to that of LDA,
produced similar results

Assessed fit of model using network statistics
o Generalized graph transitivity, dyad intensity distribution, the
vertex degree distribution, and the geodesic distance distribution



Topic Partitioned Multinetwork Embeddings (2012)

Fit was assessed by applying the aforementioned functions
to 1000 synthesized networks generated by predictive

distribution
The recipients of an email are more likely to be close to

the author of that email in the Euclidean space of that
topic



Topic Partitioned Multinetwork Embeddings (2012)

Model was used to conduct exploratory analysis;
topic-specific communication patterns were identified and
visualized

Compared generated communication patterns to actual
organizational structures (i.e. groups within the county)



Visual Recognition using Embedded Feature Selection for
Curvature Self-Similarity (2012)

Authors: Angela Eigenstetter, Bjorn Ommer

Proposes object representation based on curvature
self-similarity

Also proposes embedded feature selection methods for SVMs

Discusses problems with more advanced methods of object
representation
o High dimensionality



Visual Recognition using Embedded Feature Selection for
Curvature Self-Similarity (2012)

e Embedded feature selection incorporates feature selection
as part of the learning process
e Doubly regularized SVM instead of L1 or L2 regularized

SVM
e Introduce an additional 0-1l-encoded selection vector for

features and use it while searching for best kernel
function



Visual Recognition using Embedded Feature Selection for
Curvature Self-Similarity (2012)

e SVM training is split into 3 sets
o Optimize hyperplane for fixed feature selection parameter theta
o Parameter theta is then optimized on validation data set
m All features are initially included, and then reduced from there
o Then evaluated on test set



Visual Recognition using Embedded Feature Selection for
Curvature Self-Similarity (2012)

Bundle methods: 1iteratively add cutting hyperplanes to
build lower bound for objective function
Self-similarity: Measures the correlation of an image
patch with a larger surrounding image region

Computes all pairwise curvature self-similarities
o Very high dimensional representation

Uses 360 degree orientation in order to resolve curvature
ambiguities



Visual Recognition using Embedded Feature Selection for
Curvature Self-Similarity (2012)

Image is divided into non-overlapping 8x8 pixel cells and

histograms are built over curvature values 1in each cell
o Concatenated with 360 degree orientation of same histogram

Histogram intersection used to compute similarities
Superfluous dimensions are discarded using embedded
feature selection



Visual Recognition using Embedded Feature Selection for
Curvature Self-Similarity (2012)

e Embedded feature selection model is compared to same
models without embedded feature selection
e Dimensionality is reduced by 55% in the linear case and

40% in the non-linear case

o Most cases leads to increase in performance, never leads to decrease



Visual Recognition using Embedded Feature Selection for
Curvature Self-Similarity (2012)

Curvature self-similarity tested on the PASCAL dataset
Since model is heavily reliant on curved object contours,
it was not used on images with significant amounts of
noise obscuring such contours

Tested on all objects not marked as “difficult”



Visual Recognition using Embedded Feature Selection for
Curvature Self-Similarity (2012)

Results showed that self-similarity + feature selection
marginally improved performance on most tested object
categories

Conclusion: embedded feature selection is effective 1in
both increasing performance and reducing dimensionality,
curvature self-similarity adds some information to object
representations



References (2012)
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Embed and Project: Discrete Sampling with Universal
Hashing (2013)

Authors: Stefano Ermon, Carla P. Gomes, Ashish Sabharwal,
Bart Selman

Sampling algorithm that embeds a set into a
higher-dimensional space and then projects back to a
lower dimensional subspace

Sampling is used to approximate high-dimensional
probability distributions

Extend effectiveness of systematic search techniques such
as branch and bound to sampling



Embed and Project: Discrete Sampling with Universal
Hashing (2013)

e Problem definition: probability distribution P over
high-dimensional data set X proportional to some weight

function W
o Want to sample p(x) given some weight function w



Embed and Project: Discrete Sampling with Universal
Hashing (2013)

New probability distribution p’ is derived from p using
discretized weight function

p’ 1s used to define uniform distribution p’’ over a
discretized embedding of data set X in higher dimensional
space

Indirectly sample from p by sampling uniformly from p’’
Weight discretization is done via the use of “buckets”,
or uniform discretization of log-probability



Embed and Project: Discrete Sampling with Universal
Hashing (2013)

e Project to a configuration space that is randomly
constrained by a universal family of hash functions

e Add constraints until P configurations survive, then
output configuration using rejection sampling



Embed and Project: Discrete Sampling with Universal
Hashing (2013)

e Details PAWS algorithm for sampling configurations
e Sampling configurations used to obtain aforementioned
distribution approximation



Embed and Project: Discrete Sampling with Universal
Hashing (2013)

e Discusses accuracy guarantees by bounding

e Appropriately choosing hyperparameters can lead to
discretization errors being made arbitrarily small

e PAWS was evaluated on synthetic ising models



Embed and Project: Discrete Sampling with Universal
Hashing (2013)

e Ising grid model
o Consists of n binary variables with single-node potentials and
pairwise potentials

e PAWS outperformed Gibbs sampling, belief propagation, and
WISH



Embed and Project: Discrete Sampling with Universal
Hashing (2013)

e PAWS use case: software verification
e Main advantage over MCMC methods 1is strong accuracy

guarantee
e Hyperparameters in PAWS can be tuned for runtime or for

accuracy



DeViSE: A Deep Visual-Semantic Embedding Model (2013)

e Authors: Andrea Frome, Greg S. Corrado, Jon Shlens, Samy
Bengio, Jeff Dean, Marc'Aurelio Ranzato, Tomas Mikolov

e Model proposed to identify images based on labeled image
data as well as semantic information from unannotated
text

e Explicitly maps images to a rich semantic embedding space



DeViSE: A Deep Visual-Semantic Embedding Model (2013)

e Deep convolutional neural network with softmax struggles
to generalize as number of output classes grows

e WSABIE: algorithm that explored linear mappings from
image features to the embedding space

e Zero-shot learning: train a deep network for images and a
parallel deep network for text, then train a linear map
between the two



DeViSE: A Deep Visual-Semantic Embedding Model (2013)

e DeViSE uses skip-gram to learn word vector embeddings

e Visual model architecture is based on deep convolutional
net

e DeViSE 1is initialized using these two models



DeViSE: A Deep Visual-Semantic Embedding Model (2013)

The core visual model 1is modified to have a projection
layer that maps from the visual space to the word
embedding space

Dot product similarity and hinge rank loss used for loss
function

New inputs are transformed using visual model, and then
nearest labels in embedding space are found



DeViSE: A Deep Visual-Semantic Embedding Model (2013)

e Performance gap between DeViSE model and softmax baseline
on hierarchical metric can be attributed to learned word
embeddings

e Model has ability to make reasonable generalizations due
to proximity of labels in embedded space



DeViSE: A Deep Visual-Semantic Embedding Model (2013)

DeViSE successfully predicts a wide range of labels not
included in its training set

As the number of output labels (k) allowed (“guesses”)
increases, DeViSE outperforms baseline softmax

On more difficult datasets, DeViSE outperformed baseline
softmax for all k



DeViSE: A Deep Visual-Semantic Embedding Model (2013)

e Conclusion: DeViSE model performs on par with baseline
softmax for flat object classification and better for

hierarchical object classification
o Flat is just percentage classified correctly

e Displays better effectiveness in generalizing to
unlearned labels

e Promising for scaling from small, fixed label object
classification to much larger label sets



Learning Word Embeddings Efficiently with
Noise-Contrastive Estimation (2013)

e Authors: Andriy Mnih, Koray Kavukcuoglu

e Word embeddings learned through log-bilinear model with
noise-contrastive estimation

e Word relationship information encoded into vector
embeddings

e Word space models (based on co-occurrence statistics and
word count) suffer from extremely high dimensionality



Learning Word Embeddings Efficiently with
Noise-Contrastive Estimation (2013)

e Neural probabilistic language models (NPLM) specify the
distribution for a target word based on several context

words
o Typically, scoring function used to estimate compatibility between
context words and target word, then fed into softmax layer

e Uses log-bilinear model instead of NPLM, which operates
by performing linear prediction on the word feature space



Learning Word Embeddings Efficiently with
Noise-Contrastive Estimation (2013)

e Model predicts target word representation by taking a

linear combination of the context vectors

o Analogous to continuous bag of words
o Has position-dependent weights for context words

e Scoring function then used to predict similarity between
generated word representation and target word vectors
o Vector log-bilinear language model (vLBL)

e Distributional hypothesis: words with similar meanings
occur in similar contexts

o VLBL can be adapted to inverse model (ivLBL) where context words are
generated from target word (like skip-gram)



Learning Word Embeddings Efficiently with
Noise-Contrastive Estimation (2013)

e Noise-contrastive estimation (NCE): train a logistic
regression classifier to discriminate between valid data
points and noise within the data

e NCE avoids explicit normalization, makes training time
independent of vocabulary size

e Uses global unigram distribution for noise distribution



Learning Word Embeddings Efficiently with
Noise-Contrastive Estimation (2013)

e Model 1is tested using analogy question data sets

e Analogy tasks of the form a:b -> c:(guess word)

e Used April 2013 dump of Wikipedia as well as the MSR
sentence completion challenge data set

e All models were trained on a single core with no
regularization



Learning Word Embeddings Efficiently with
Noise-Contrastive Estimation (2013)

e Originally used halving learning rate, but led to poor
representations

e Linear learning rate produced better results, but suffers
from potentially undertraining some representations due
to every representation sharing the same learning rate

e Opted to use adaptive gradient descent (AdaGrad), which

yielded even better results
o Sparse data has higher learning rate under AdaGrad



Learning Word Embeddings Efficiently with
Noise-Contrastive Estimation (2013)

e Compared 1ivLBL against skip-gram to measure efficacy
versus tree-based (hierarchical) algorithms
e 300-dimensional 1ivLBL outperformed 300-dimensional
skip-gram by 3-9%
o Same model did only marginally (2-4%) worse than 1000-dimensional
skip-gram trained on 4 times as much data



Learning Word Embeddings Efficiently with
Noise-Contrastive Estimation (2013)

e Surprisingly, position-independent versions of LBL models
outperformed position-dependent counterparts

e Even lowest-dimensional (100D) LBL model performed with
an accuracy of 51% on sentence completion dataset

e Conclusion: vLBL/ivLBL with NCE is a simpler, more
scalable approach that also produces more effective
embeddings than tree-based methods (i.e. skip-gram)



Translating Embeddings for Modeling Multi-Relational Data
(2013)

Authors: Antoine Bordes, Nicolas Usunier, Alberto
Garcia-Duran, Jason Weston, Oksana Yakhnenko

Considers problem of embedding relationships of
multi-relational data in low-dimensional vector spaces
Multi-relational data corresponds to directed graphs with

entities and edges
o 1d.e. social networks

Modeling process boils down to collecting local or global
connectivity patterns between entities



Translating Embeddings for Modeling Multi-Relational Data
(2013)

e Most existing methods for modeling multi-relational data
exist within the framework of relational learning from
latent attributes

e Models that depend on tensor/collective matrix
factorization suffer from potentially overfitting, more

difficult interpretations, and higher computational costs
o Potential overfitting due to difficulty of regularization

e TranskE: Energy-based model for learning low-dimensional
embeddings of entities



Translating Embeddings for Modeling Multi-Relational Data
(2013)

Relationships are expressed as translations in embedding

space
o (h, 1, t) -> head vector 1is related to tail vector by some vector
that depends on the relationship 1 (h+l=t)

Energy of a triplet is equal to some dissimilarity
function d(h+1l, t) (either the L1 or L2 norm)
Minimize a margin-based ranking criterion over the

training set using stochastic gradient descent
o Regular triplets are compared to “corrupted” triplets generated by
using a random choice of tail for a given head and relationship



Translating Embeddings for Modeling Multi-Relational Data
(2013)

Structural Embedding (SE): embeds relationships into two
matrices (L1, L2) such that d(L1, h, L2, t) is minimized
for proper triplets and maximized for corrupt ones

Neural Tensor Model: learns scores of the form s(h, 1, t)
= hATxL*t+1L1ATxh+12AT*t

TranskE drawback: seen as encoding 2-way interactions,
could fail for higher levels of dependency



Translating Embeddings for Modeling Multi-Relational Data
(2013)

TransE is evaluated on data extracted from Wordnet and
Freebase

Wordnet: knowledge base (KB) designed to produce an

intuitively usable dictionary and thesaurus

o Model evaluated by replacing heads in triplets with entities from
dictionary

o Similar process with replacing tails
Freebase: huge and growing KB of general facts (1.2
billion+ triplets)



Translating Embeddings for Modeling Multi-Relational Data
(2013)

Compared to simplified version of TranskE that only
considers data as mono-relational

Compared to RESCAL, a collective matrix factorization
model

Also compared to similar energy-based models SE and SME
(linear and bilinear)

TranskE outperformed counterparts on all metrics for link
prediction



Translating Embeddings for Modeling Multi-Relational Data
(2013)

Transk performance can be attributed to relative
simplicity of model allowing more effective stochastic
gradient descent

Introduction of translation term seems to make a huge
impact, as TransE significantly outperforms unstructured
TransE (unstructured simply clusters entities without
guessing based on relationships/translations)



Translating Embeddings for Modeling Multi-Relational Data
(2013)

e TranskE appears to learn much faster than comparable
models, as its performance on predicting new
relationships from few examples improves monotonically as
new samples are introduced

e Conclusion: minimally parameterized models for learning
knowledge base embeddings can work very well and are
highly scalable



Robust Low Rank Kernel Embeddings of Multivariate
Distributions (2013)

Authors: Le Song, Bo Dai

Proposes a hierarchical low rank decomposition of kernel
embeddings

Key idea is to map distributions to potentially infinite
feature spaces and then perform analysis using kernel
operations

Current kernel embedding algorithms fail to take
advantage of low rank structure in high-dimensional data



Robust Low Rank Kernel Embeddings of Multivariate
Distributions (2013)

e Evaluation of a function f on any x can be viewed as an
inner product in the embedding space

e A joint density can be embedded into a tensor product
feature space by taking the expected value of the tensor
product of the feature maps of all of the x_i



Robust Low Rank Kernel Embeddings of Multivariate
Distributions (2013)

e Kernel embeddings can be generalized to include a
conditional embedding operator that outputs an embedding
after taking in a variable to condition on (z)

e Kernel embedding can be viewed as a multi-linear operator
of order d



Robust Low Rank Kernel Embeddings of Multivariate
Distributions (2013)

e Latent variables lead to low rank kernel embeddings
© This is due to there being a decomposition proportional to the number
of indicator values of the latent variables
e Conditional independence structure is a tree

o Each edge corresponds to a pair of latent variables
o Low rank reshapings corresponding to each edge in tree



Robust Low Rank Kernel Embeddings of Multivariate
Distributions (2013)

e Considers case where latent tree structure has
caterpillar shape
o Leads to hierarchical tensor decomposition

e Low rank representation of the kernel embedding as a set
of intermediate tensors



Robust Low Rank Kernel Embeddings of Multivariate
Distributions (2013)

e Algorithm deals with infinite dimensions by using kernel
singular value decomposition

e The resulting set of intermediate tensors can be applied
to a set of elements and expressed as kernel operations

e Decomposition of empirical embeddings may suffer from
sampling error



Robust Low Rank Kernel Embeddings of Multivariate
Distributions (2013)

e Bounds the difference between true kernel embeddings and

low rank kernel embeddings
e Proposed decomposition 1is robust and still provides good
approximation when latent variable tree structure 1is

misspecified



Robust Low Rank Kernel Embeddings of Multivariate
Distributions (2013)

e Low rank embeddings provide best (or on par) negative

log-likelihood
e Conclusion: robust, kernel embedding algorithm based on

low rank structure of the data 1is effective
e Drawbacks: sequence of kernel singular decompositions is

not efficient
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Robust Low Rank Kernel Embeddings of Multivariate
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A Unified Semantic Embedding: Relating Taxonomies and
Attributes (2014)

e Authors: Sung Ju Hwang, Leonid Sigal

e Proposes a unified model for semantics in which semantic
entities and super-categories are embedded in the same
space

® Object categorization: drawing boundaries between objects
in continuous space



A Unified Semantic Embedding: Relating Taxonomies and
Attributes (2014)

e A category can be represented as 1its super-category + 1its
category-specific modifiers (attributes)

e Paper attempts to link category hierarchies and
attributes

e Embedding-based methods perform classification 1in
lower-dimensional shared embedding space



A Unified Semantic Embedding: Relating Taxonomies and
Attributes (2014)

Translate images and labels to same embedding space such
that the similarity (S(image, label)) 1is maximized for
labeled images

Use large-margin constraints on distances between vectors

in order to ensure that image is closest to its assigned
label



A Unified Semantic Embedding: Relating Taxonomies and
Attributes (2014)

e Data instances are mapped to be closer to their super
category mappings than their sibling instance mappings

e Attributes can be considered as making up the basis of a
semantic space representing a category

e Object class can be represented as its parent class plus
a sparse combination of attributes



A Unified Semantic Embedding: Relating Taxonomies and
Attributes (2014)

e Uses stochastic subgradient method to optimize embedding
models

e Optimize data embedding and category embedding separately
until convergence

e Method validated on 2 different data sets generated from
publicly available image data



A Unified Semantic Embedding: Relating Taxonomies and
Attributes (2014)

e Non-semantic baselines: ridge regression, nearest mean
classifier, largest margin embedding
e Implicit semantic baselines: LMTE, ALE, HLE, AHLE

e OQutperforms baselines in almost all categories
o Performed slightly worse than AHLE and HLE 1in hierarchical precision
(at k = 5)



A Unified Semantic Embedding: Relating Taxonomies and
Attributes (2014)

e Main advantage of method 1is ability to generate compact,

semantic expressions for each category
o Allows for human-readable explanations

e Rich generated descriptions should lead to better
performance on few-shot learning (learning from very few
data samples)



A Unified Semantic Embedding: Relating Taxonomies and
Attributes (2014)

e Outlined method has greatest increase in performance as
number of samples increase in few-shot learning

e Conclusion: proposed model has better flat-line
performance and similar or better hierarchical precision
in addition to semantically meaningful decompositions



Deep Fragment Embeddings for Bidirectional Image
Sentence Mapping (2014)

e Authors: Andrej Karpathy, Armand Joulin, Fei Fei F. Li

e Model that embeds fragments of images and fragments of
sentences into a common space

e Formulates a max-margin objective for a deep neural
network that learns to embed both image and sentence
fragments into a common, multimodal space



Deep Fragment Embeddings for Bidirectional Image
Sentence Mapping (2014)

Typical multimodal representation methods reason at the
global level with a representation for the entire

image/sentence

o Proposed model reasons about objects that make up a more complex
image/sentence

Neural network that connects image pixels to 1-of-k word
representations

Inner product between vector representations is fragment
compatibility score



Deep Fragment Embeddings for Bidirectional Image
Sentence Mapping (2014)

e Sentence fragments extracted from dependency tree

structure as opposed to n-grams
o Edge in tree represents fragment
o Words encoded as 1-of-k vectors from 400,000 word dictionary

e Sub-objects are detected in an image using region
convolutional neural networks (RCNN)



Deep Fragment Embeddings for Bidirectional Image
Sentence Mapping (2014)

Objective function defined as sum of global ranking
objective, fragment alignment objective, and a
regularization term

Fragment alignment objective encodes correspondence
between sentence fragments and image fragments within

sentence and image being considered
o Assumes dense alignment between all pairs of fragments

Multiple instance learning extension: infers latent
alignment between fragments using negative sampling
approach



Deep Fragment Embeddings for Bidirectional Image
Sentence Mapping (2014)

e Global ranking objective: image-sentence alignment score
is defined to be average threshold score of pairwise

fragment scores

o positive scores - correct alignments, negative scores - incorrect
alignments

e Optimized using stochastic gradient descent with a
mini-batch size of 100



Deep Fragment Embeddings for Bidirectional Image
Sentence Mapping (2014)

e Image-sentence retrieval performance evaluated on
PascallK, Flickr8K, and Flickr30K datasets

e Use Stanford CoreNLP processor to compute dependecy trees
for sentences

e Used Caffe implementation of ImageNet RCNN model for
image detection

e Compared against SDT-RNN and DeViSE



Deep Fragment Embeddings for Bidirectional Image
Sentence Mapping (2014)

e Breaking down images into image fragments improves
performance

e Dependency tree relations outperform continuous bag of
words/n-grams

e Fine-tuning/preventing overfitting of the CNN improves
performance on Flickr30K dataset



Deep Fragment Embeddings for Bidirectional Image
Sentence Mapping (2014)

Limitations: Edges from sentence dependency tree may
oversimplify relationships, and RCNN can sometimes
spuriously detect a single object as multiple ones
Conclusion: Provided model 1improves upon previously
proposed bidirectional image-sentence models and provides
interpretable predictions



Subspace Embeddings for Polynomial Kernel (2014)

e Authors: Haim Avron, Huy L. Nguyen, and David P. Woodruff

e Proposes fast oblivious subspace embedding
o Embed a space induced by a non-linear kernel without explicitly
mapping the data to the high-dimensional space

e Oblivious subspace embedding: data-independent random
transformation that produces an approximate isometry over
the embedding space



Subspace Embeddings for Polynomial Kernel (2014)

e Kernel of the form k(x, y) = (<x, y>+c)”’p
e Proposed transformation generates an approximate isometry

and is data-independent
o Brings together the characteristics of Kernel PCA and Random Fourier
Features

e Transformation can be used to speed up various learning
algorithms that employ polynomial kernels



Subspace Embeddings for Polynomial Kernel (2014)

e Prior work: TensorSketch and CountSketch
o TensorSketch combines CountSketch with Fast Fourier Transform and can
be used for statistical learning with a polynomial kernel

e Previous sketch methods do not provide provable
guarantees for preserving entire subspace
e Similar work: random feature maps that approximate kernel

function with inner product
o More like a heuristic, hard to relate to metrics such as
generalization error
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Subspace Embeddings for Polynomial Kernel (2014)

e CountSketch is specified by a 2-wise independent hash
function and a 2-wise independent sign function

e TensorSketch (for polynomial of order q) is specified by
g 3-wise independent hash functions and g 4-wise
independent sign functions

e TensorSketch is an oblivious subspace embedding



Subspace Embeddings for Polynomial Kernel (2014)

Describes K-space algorithm
TensorSketches to construct
Proves probabilistic bounds
Applications to approximate
approximation

that employs independent
oblivious subspace embedding
for approximate isometry
kernel PCA and low rank



Subspace Embeddings for Polynomial Kernel (2014)

e Bounds complexity for computing embedding
e Proposes regularization via rank-k approximations to
input matrix

e Methods that can be regularized using this approach:

o Approximate kernel principal component regression
o Approximate kernel canonical correlation analysis



Subspace Embeddings for Polynomial Kernel (2014)

Compare ordinary 12 regression to approximate principal
component 12 regression

Experimented with feature extraction using only a subset
of the training data in order to deal with k-space
overhead

K-space produces higher quality features than simply
using TensorSketch



Subspace Embeddings for Polynomial Kernel (2014)

Compare ordinary 12 regression to approximate principal
component 12 regression

Experimented with feature extraction using only a subset
of the training data in order to deal with k-space
overhead

K-space produces higher quality features than simply
using TensorSketch



Subspace Embeddings for Polynomial Kernel (2014)
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overhead
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Subspace Embeddings for Polynomial Kernel (2014)

e Conclusion: paper describes first oblivious subspace
embedding for non-linear kernel

e Proposes next step of designing oblivious subspace
embeddings for non-finite kernels (i.e. expansion induced
by Gaussian kernel)



Neural Word Embedding as Implicit Matrix Factorization
(2014)

e Authors: Omer Levy, Yoav Goldberg

e Proposes method using sparse shifted positive PMI
word-context matrix

e Analyzes and attempts to broaden understanding of neural
network based word embeddings

o Specifically skip-gram with negative sampling



Neural Word Embedding as Implicit Matrix Factorization
(2014)

e Skip-Gram: Trains word embedding based on word-context
pairs using neural network

e Negative Sampling: Maximize probability of observed
word-context pairs and maximize complementary probability
for random, “negative” samples of word-context pairs



Neural Word Embedding as Implicit Matrix Factorization
(2014)

e Views skim-gram with negative sampling as implicitly
factoring some matrix M into word and context matrices

e Shows how optimization in skip-gram with negative
sampling leads to factoring a shifted pointwise mutual
information (PMI) matrix



Neural Word Embedding as Implicit Matrix Factorization
(2014)

e Casts the objective of skip-gram with negative sampling
as a weighted matrix factorization problem

e Pointwise mutual information measures the association
between a pair of discrete outcomes

e In this case, PMI 1is used to measure association between
word and context



Neural Word Embedding as Implicit Matrix Factorization
(2014)

Resulting matrices can be dense => can be made sparse
using positive PMI (PPMI) metric

Shifted PPMI derived from skip-gram with negative
sampling objective function can be used to compute word

embeddings
Additional alternative: Singular Value Decomposition

(SVD)



Neural Word Embedding as Implicit Matrix Factorization
(2014)

e Typical SVD-based factorization yields word and context

matrices with very different properties

o Proposes symmetric SVD factorization, which appears to work better

empirically
e SVD versus skip-gram with negative sampling

o SVD does not require learning rates/hyper-parameter tuning

o Skip-gram with negative sampling differentiates between observed and
unobserved events, SVD does not

o Middle-ground: Stochastic Matrix Factorization (SMF)



Neural Word Embedding as Implicit Matrix Factorization
(2014)

e ALl models being compared were trained on English
Wikipedia

e Observed that sparse positive PMI (SPPMI) was a
near-perfect approximation of the optimal solution
computed via gradient descent

e Evaluated resulting word representations on word
similarity and analogy datasets



Neural Word Embedding as Implicit Matrix Factorization
(2014)

e Conclusion: SPPMI 1is a significant improvement on PMI
methods for approximating skip-gram with negative
sampling objective

o Does not necessarily out-perform skip-gram, possibly due to
over-weighting rare words

e SVD performed poorly 1in approximating objective, but had
good performance on word similarity tasks

e Future work: Investigate weighted matrix factorizations
of word-context matrices with PMI-based association
matrices
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Space-Time Local Embeddings (2015)

Authors: Ke Sun, Jun Wang, Alexandros Kalousis, Stephane
Marchand-Maillet

Proposes space-time representation as an alternative to
traditional Euclidean space representation (Embedding 1in
Minkowski space)

Drawbacks of typical RAn embedding

o Limited number of points that share a nearest neighbor
o Hard to model pairwise similarities
o Must admit transitive relationships (neighbor’s neighbor)



Space-Time Local Embeddings (2015)

e Defines space-time metric which has space component as
first D_s elements of diagonal (identity) and time
component as last D_t elements of diagonal (negative
identity)

e Allows for the definition of a space-time interval
between points to be a difference of sums of squared

differences
o Point is an “event”

e Is not necessarily transitive, as desired



Space-Time Local Embeddings (2015)

e Defines a linear mapping from a set of Gram matrices to a
set of square distance matrices

e Events 1n space-time as well as their dintervals are 1in
the set of mapped square distance matrices

e Regular pairwise distance matrices in Euclidean space
disregard directional information



Space-Time Local Embeddings (2015)

e Space-time embedding can represent any square matrix of
positive pointwise similarities

e Similarities can be represented as accurately as desired
in either space or space-time models, no reason to favor
space-only

e Project a similarity matrix to a set of space-time events



Space-Time Local Embeddings (2015)

Finds optimal embedding from similarity matrix by
minimizing Kullback-Leibler divergence between input
matrix p and output matrix Y(p)

o Computed via stochastic gradient descent

Compares SNE, t-SNE, and proposed method SNEAst (where
SNE 1is stochastic neighbor embedding)

Datasets: SCHOOL, NIPS22 (author-document matrix), GrQc
(Arxiv co-authorship), W5000 (semantic similarities
between 5000 english words)



Space-Time Local Embeddings (2015)

Table 1: KL divergence of different embeddings. After repeated runs on different configurations for
each embedding, the minimal KL that we have achieved within 5000 epochs is shown. The bold
numbers show the winners among SNE, t-SNE and SNE®T using the same number of parameters.

SCHOOL NIPS17 NIPS22 GrQc W1000 W5000

SNE — ®Z 052 1.88 298 3.19 3.67 4.93
SNE — R 0.36 0.85 1.79 182 3.20 4.42
SNE — ®*  0.19 0.35 1.01 1.03 2.76 3.93
t-SNE — R 0.61 0.88 1.29 1.24 2.15 3.00
t-SNE — ®*  0.58 0.85 1.23 1.14 2.00 2.79
t-SNE — R*  0.58 0.84 122 1.11 1.96 2.74
SNEST — RIT 0.43 0.91 1.62 2.34 2.59 3.64
SNEST — 21 0.31 0.60 0.97 1.00 1.92 2.57
SNEST — ®3:1  0.29 0.54 0.93 0.88 1.79 2.39




Space-Time Local Embeddings (2015)

Data visualization of proposed method: visually nearby
points are similar, despite the introduction of time
dimension

If an input is larger than what can faithfully be modeled

in a space-only model, it is pushed to a different time
o Embedded points with large absolute times represent important points



Space-Time Local Embeddings (2015)

e Conclusion: Using the same number of dimensions, certain
input data i1s better preserved using space-time embedding
e Proposed method is learning on a sub-manifold

e Future methods could employ different projections to
sub-manifolds

o Alternative measures to KL-divergence



A Fast, Universal Algorithm to Learn Parametric Nonlinear
Embeddings (2015)

Authors:Miguel A. Carreira-Perpinan, Max Vladymyrov
Uses auxiliary coordinates to alternate training of
parametric input mapping and auxiliary embedding

Given a high-dimensional dataset of N points, algorithm

attempts to find low-dimensional projections
o Similar algorithms: SNE, t-SNE, NeRV



A Fast, Universal Algorithm to Learn Parametric Nonlinear
Embeddings (2015)

e Optimizing nonlinear embeddings is difficult

o There are many parameters
o Objective function is nonconvex; gradient descent may require more

iterations
o Has a quadratic number of terms, so evaluating gradient can be slow

e Parametric embedding: restrict embeddings to only those
realizable by a family of fast parametric mappings

e Paper focus: optimizing an unsupervised parametric
embedding defined by a given objective and a given family
of mapping



A Fast, Universal Algorithm to Learn Parametric Nonlinear
Embeddings (2015)

e Parametric embedding objective function: embedding
objective evaluated on mappings of points to

lower-dimensional space
o Can thus be considered as a combination of embedding objective and
mapping family
e Parametric embedding typically worsens free embeddings,
with more powerful mapping families (i.e. neural nets vs.

linear) being more effective at not worsening embeddings



A Fast, Universal Algorithm to Learn Parametric Nonlinear
Embeddings (2015)

e Parametric embedding can be optimized via computing

gradient with respect to mapping parameters

o Difficult to implement
o Slow in practice, due to quadratic complexity

e Parametric embedding can be viewed as a nested function,
where we apply F (mapping) and then E (objective)

e Nested problem can be represented as equivalent,
constrained optimization problem by introducing auxiliary
coordinates for each input pattern



A Fast, Universal Algorithm to Learn Parametric Nonlinear
Embeddings (2015)

Optimize parametric embedding by alternating optimization
between mapping and associated auxiliary coordinates
Given auxiliary coordinates Z, we can optimize the family
of mappings F over Z by least-squares regression

Given a mapping family F, we can optimize auxiliary
coordinates Z using regularized embedding

Despite introducing new parameters, algorithm does not
increase time complexity

Allows for easy extension of existing N-body methods, due
to not explicitly using chain-rule gradients



A Fast, Universal Algorithm to Learn Parametric Nonlinear
Embeddings (2015)

Experiments compare proposed algorithm to conventional
optimization based on chain-rule gradients for various
embedding objectives and mapping families

Uses COIL-20 dataset, which contains rotations of 20
physical objects

Goal of experiment is to show that it is easy to derive
convergent, efficient algorithms for various combinations
of embeddings and mappings (universality)



A Fast, Universal Algorithm to Learn Parametric Nonlinear
Embeddings (2015)

e Applied proposed algorithm (MAC) to learn parametric
embeddings for MNIST dataset of 60000 images

e Nonlinear (free) embedding on a dataset of this was
previously very slow

o MAC algorithm employing previous work on N-body methods allowed
significant speed-up



A Fast, Universal Algorithm to Learn Parametric Nonlinear
Embeddings (2015)

e Conclusion: using auxiliary coordinates to learn
parametric embeddings simplifies algorithm development

without sacrificing embedding quality

o Particularly useful when able to employ high specialized/optimized
work such as N-body methods

e Additionally, MAC can be quite faster than chain-rule
gradient based optimization



Compressive Spectral Embedding: Sidestepping the SVD
(20159)

Authors: Dinesh Ramaswamy, Upamanyu Madhow

Singular Value Decomposition (SVD), which is typically
used for preprocessing/dimensionality reduction, becomes
a bottleneck as problem size increases

Sidesteps SVD by focusing on pairwise similarity metrics
Problem setup: given an input matrix, we wish to compute
a transformation on the rows of the matrix that
succinctly describes the global structure of the matrix
via similarity metrics



Compressive Spectral Embedding: Sidestepping the SVD
(20159)

e Typically, a partial SVD is used to embed the rows of the

matrix into a lower-dimensional space

o Use of partial SVD can also have added benefit of “denoising” the
data

e Bottlenecks result due to increasing number of singular
vectors required to capture structure of MxN matrix as
size increases

e Paper focuses on computing embedding that captures
pairwise similarity metrics while sidestepping SVD



Compressive Spectral Embedding: Sidestepping the SVD
(20159)

e Related work i1n exact/approximate SVD approximation

attempts to minimize matrix reconstruction error
o Approximation methods (i.e. Nystrom method) place constraints on
computational budgets
e Algorithms that sidestep SVD computation are specialized
o Graphs can be embedded based on diffusion of probability mass 1in
random walks over the graph (specialized for probability transition
matrices)

e Paper proposes framework for sidestepping SVD
computation, first with NxN input matrix and then
generalizes to MxN matrices



Compressive Spectral Embedding: Sidestepping the SVD
(20159)

e Algorithm uses compressive embedding of N dimensions to
O(LogN) dimensions, since only interested in pairwise
similarity measures

e Approximates embedding function using polynomial in order
to compute efficiently

e Proves performance bound for computing embedding function
using polynomial approximation



Compressive Spectral Embedding: Sidestepping the SVD
(20159)

e Algorithm uses compressive embedding of N dimensions to
O(LogN) dimensions, since only interested in pairwise
similarity measures

e Approximates embedding function using polynomial in order
to compute efficiently

e Proves performance bound for computing embedding function
using polynomial approximation



Compressive Spectral Embedding: Sidestepping the SVD
(20159)

Polynomial approximations are measured via spectral norm

o Equivalent to seeing how well the function can be approximated at
eigenvalues

Overcomes 1inefficiency of computing eigenvalues by
considering a uniform distribution of eigenvalues and
then minimizing average error over the distribution
Polynomials are then generated via Legendre polynomials



Compressive Spectral Embedding: Sidestepping the SVD
(20159)

Generalizes approach from symmetric NxN matrix to any MxN

o
matrix (with determinant less than 1) by considering
(M+N)x (M+N) matrix
o First M rows correspond to rows of MxN matrix, last N rows correspond
to columns of MxN matrix
e Implementation considerations: use of spectral norm, use

of polynomial approximations, use of legendre
polynomials, denoising by cascading



Compressive Spectral Embedding: Sidestepping the SVD
(20159)

e Exact embedding compared to compressive embedding
generated by algorithm

e (Considers real-world undirected graph data
o DBLP Collaboration Network
o Amazon Co-purchasing Network

e Significant time improvements, at the cost of some
inference quality

e Yields better clustering quality due to being able to
more concisely capture eigenvectors



Compressive Spectral Embedding: Sidestepping the SVD
(20159)

Conclusion: combination of random projections and
polynomial expansions is effective in approximating
pairwise distances in a spectral embedding

Method can be used to approximate spectral embeddings
dependent on entire SVD (as opposed to just partial), as
it is independent of number of dominant vectors used 1in
model

Future work concerning extending method to improving
downstream inference tasks 1in various large-scale
problems



Sparse Local Embeddings for Multi-label Classification
(20159)

Authors: Kush Bhatia, Himanshu Jain, Purushottam Kar,
Manik Varma, Prateek Jain

Motivation: leading embedding approaches have been unable
to deliver high prediction accuracies or scale to large
datasets

Proposes SLEEC (Sparse Local Embeddings for Extreme
Classification), which learns a small ensemble of local
distance preserving embeddings

Problem (XML): creating a classifier that can accurately
tag a point with the most relevant subset of labels



Sparse Local Embeddings for Multi-label Classification
(20159)

1-vs-All techniques (classifier per label) infeasible for
XML (extreme multi-label learning) problem due to the
sheer number of labels

Standard approach is to reduce label dimensionality by

low rank embedding
o Assumes that the training-label matrix is low rank
o Slow at training and prediction, even for small label sets

SLEEC learns non-linear embeddings that preserve pairwise

distances between only the closest label vectors
o Prediction is done via kNN instead of matrix decompression



Sparse Local Embeddings for Multi-label Classification
(20159)

SLEEC clusters training data into C clusters and learns
an embedding per cluster, so as to perform a localized
kNN

o Tackles 1dnstability of high-dimensional clustering by learning a
small ensemble of embeddings for randomized clusters

o Significant speedup, can be attributed to corresponding embeddings

o Outperforms tree-based methods

On WikiLSHTC, had a 55% classification accuracy with an 8
ms prediction time vs. LEML’s 20% classification accuracy
on 300 ms



Sparse Local Embeddings for Multi-label Classification
(20159)

e Label matrix Y cannot be well-approximated using a

low—-dimensional linear subspace
o However, can be approximated using a low-dimensional non-linear

manifo'ld
e Focus on preserving distances only between closest

neighbors
o Modify objective function to consider set of neighbors to be

preserved
o Adds L1 and L2 regularizations to maintain sparse embeddings



Sparse Local Embeddings for Multi-label Classification
(20159)

Optimization is split into two phases: learning
embeddings and then learning regressors

o Regressors are used to predict embeddings using input features
Uses Singular Value Projection (SVP) to perform
optimization

Defines a loss function whose optima yields the
neighborhood selection criteria



Sparse Local Embeddings for Multi-label Classification
(20159)

Proves that generalization error bound is independent of
dimension of input/label spaces
Train method over local clusters so as to combat

high-dimensionality of label space
o Even with clustering into homogenous regions, the data 1is still not
low-rank

Using ensembles of classifiers based on different
clusterings yields significantly better performance
(deals with instability of clustering)



Sparse Local Embeddings for Multi-label Classification
(20159)

WIKiLSHTC [L=325K,d = 1.61M, n = 1.77M] WikiLSHTC [L= 325K, d = 1.61M, n=1.77M]

Wiki10 [L:30K, d=101K, n= 14K]
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Figure 2: Variation in Precision@ | accuracy with model size and the number of learners on large-scale data
sets. Clearly, SLEEC achieves better accuracy than FastXML and Local LEML-Ensemble at every point of the
curve. For WikiLSTHC, SLEEC with a single learner is more accurate than LocalLEML-Ensemble with even
15 learners. Similarly, SLEEC with 2 learners achieves more accuracy than FastXML with 50 learners.

Datasets used: AdslM, Amazon, WikiLSHTC, DeliciouslLarge,
Wikil0

(@)

Also uses smaller datasets due to inability to scale other techniques
for comparison



Sparse Local Embeddings for Multi-label Classification
(20159)

Table I: Precision Accuracies (a) Large-scale data sets : Our proposed method SLEEC is as much as 35%
more accurate in terms of P@ | and 22% in terms of P@5 than LEML, a leading embedding method. Other
embedding based methods do not scale to the large-scale data sets: we compare against them on small-scale
data sets in Table E]. SLEEC is also 6% more accurate (w.r.t. P@1 and P@5) than FastXML, a state-of-the-
art tree method. ‘-’ indicates LEML could not be run with the standard resources. (b) Small-scale data sets
: SLEEC consistently outperforms state of the art approaches. WSABIE, which also uses kNN classifier on
its embeddings is significantly less accurate than SLEEC on all the data sets, showing the superiority of our
embedding learning algorithm.

(a) (b)
Data sct | SLEEC LEML FastXML LPSR-NB Data sct | SLEEC LEML FastXML WSABIE OneVsAll
p@1 | 85.54 7350 8256 72.71 P@l | 6557 6253 63.73 54.77 61.83
Wikilo P@3 | 7359 6238  66.67 58.51 BibTex P@3| 4002 384 39.00 32.38 36.44
P@5 | 63.10 5430 56.70 49.40 P@s | 2930 2821  28.54 2398 26.46
Pp@l | 47.03 40.30 42.81 18.59 P@1 | 6842 6566 69.44 64.12 65.01
Delicious-Large P@3 | 41.67 37.76 38.76 15.43 Delicious P@3 | 6183 6054 63.62 58.13 58.90
Pp@5 | 38.88 36.66 36.34 14.07 P@5 | 5680 5608 59.10 53.64 53.26
P@l | 5557 19.82 49.35 27.43 p@l | 8709 8400 84.24 §1.29 83.57
WikiLSHTC P@3 | 33.84 1143 32.69 16.38 MediaMill p@3 | 7244 67.19 67.39 64.74 65.50
p@s | 24.07 8.39 24.03 12.01 P@s | 5845 5280 53.14 49.82 48.57
p@l | 35.05 8.13 33.36 28.65 Pl | 8017 6128 68.69 70.87 74.96
Amazon p@3 | 31.25 683 29.30 24.88 EurLEX P@3 | 6539 4866 57.73 56.62 62.92
P@5 | 28.56 603 26.12 22.37 P@s | 5375 3991 48.00 46.2 53.42
P@1 | 21.84 2 23.11 17.08
Ads-1m p@3 | 14.30 L 13.86 11.38
p@s | 1101 - 10.12 8.83




Sparse Local Embeddings for Multi-label Classification
(20159)

e Conclusion: SLEEC scales better than all other compared
embedding methods, and has better or comparable

performance to all methods
o Only real competition 1is FastXML (tree-based methods)



Semi-supervised Convolutional Networks for Text
Categorization via Region Embedding (2015)

e Authors: Rie Johnson, Tong Zhang

e Proposes semi-supervised network with convolutional
neural networks for text categorization

e Method learns embeddings of small text regions as opposed
to words

o Where ‘embedding’ signifies structure-preserving function



Semi-supervised Convolutional Networks for Text
Categorization via Region Embedding (2015)

Framework learns a region embedding from unlabeled data,
which is used as input to a supervised CNN
Learns tv-embeddings: two-view embeddings based on

predicting context of unlabeled data
o Goal is to learn tv-embeddings specific to tasks of 1interest, as
opposed to general word embeddings
o Map text regions to high-level concepts relevant to the task
Preliminary work: bag-of-words CNN
o Co-presence and absence of words to produce predictive features



Semi-supervised Convolutional Networks for Text
Categorization via Region Embedding (2015)

Procedure: learn embeddings of unlabeled data and then
use embeddings 1in supervised training

F is a tv-embedding of X1 with respect to X2 1is there
exists G such that P(X2 | X1) = G(F(X1), X2))

o Preserves everything required from a view (X1) to predict another
view (X2)

Focuses on nonlinear learning of region embedding
First train neural network to produce tv-embeddings, then
integrate tv-embeddings into base CNN



Semi-supervised Convolutional Networks for Text
Categorization via Region Embedding (2015)

e Considers sub-task of labeling to individual text
regions, and then builds predictions based on these
regions

e Unsupervised target representation encodes target/context
as BOW vectors of regions to the left and right of X1
(considered region) with vocabulary-control

e Partially supervised target representation uses CNN
trained on labeled data to produce context vectors



Semi-supervised Convolutional Networks for Text
Categorization via Region Embedding (2015)

e Tv-embeddings are used as additional 1input to base CNN’s
convolutional layer to generate a supervised embedding

e Datasets used: IMDB, Elec, RCV1

e Implementation: Used one-layer CNN models as base, and
then fed in tv-embeddings

e Tuning of meta-parameters was done via cross-validation



Semi-supervised Convolutional Networks for Text
Categorization via Region Embedding (2015)

IMDB Elec | RCVI
1 [inear SVM with I-3grams [[L1] 10.14 1 9.16 | 10.68
2 linear TSVM with 1-3grams 9.99 1 16.41 | 10.77
3 [13]'s CNN 9.17 8.03 | 10.44
4 One-hot CNN (simple) [11] 8.39 7.64 9.17
5 | One-hot CNN (simple) co-training best | (8.06) | (7.63) | (8.73)
6 100-dim 7.12 6.96 8.10
7 unsupLy.: | 200:dim 6.81 | 6.69 | 7.97
8 100-dim 1.12 6.58 3.19
9 | Our CNN | PASUP- 1 500 dim 7.13 | 657 7.99
10 3 100-dim 7.05 6.66 8.13
11 unsup3-tv. | 500-dim 6.96 | 6.84 | 8.02
12 all three [00x3 651 | 627 | 7.1

Table 3: Error rates (%). For comparison, all the CNN models were constrained to have 1000 neurons. The
parentheses around the error rates indicate that co-training meta-parameters were tuned on test data.



Semi-supervised Convolutional Networks for Text
Categorization via Region Embedding (2015)

Results: region tv-embeddings shown to be more effective
than simply manipulating word vectors
Compared tv-embeddings to traditional word vector

concatenation and word vector average embeddings
o Regional embedding learns co-presence and absence effectively, is
more expressive than other embeddings for similar tasks



Semi-supervised Convolutional Networks for Text
Categorization via Region Embedding (2015)

e Conclusion: Region embeddings capture more information
than general word embeddings, which can be isolated

e Models based on proposed method employing tv-embeddings
had better performance on sentiment and topic
classification tasks when compared to previous best
models



Weighted Theta Functions and Embeddings with
Applications to Max-Cut, Clustering, and Summarization

e Authors: Frederik D. Johansson, Ankani Chattoraj,
Chiranjib Bhattacharyya, Devdatt Dubhashi
e Proposes a unifying generalization of the Lovasz theta

function, and the associated geometric embedding

o Extends from unweighted graphs to graphs with weighted edges and
nodes



Weighted Theta Functions and Embeddings with
Applications to Max-Cut, Clustering, and Summarization

e Exploits connection between SVM and theta function to
produce equivalent characterization of Delsarte version

of Lovasz number
o Kernel characterization used as approximation to semidefinite program
formulation of theta function

e Resulting weighted theta function is a measure of
diversity in graphs

e Key observation: set of orthonormal representations
(embeddings) is equivalent to the set of kernels K



Weighted Theta Functions and Embeddings with
Applications to Max-Cut, Clustering, and Summarization

e Delsarte version of the Lovasz number relaxes

orthogonality constraint; introduces obtuse labelings
o Non-adjacent nodes correspond to vectors meeting at obtuse angles on
the unit sphere

e Extends Delsarte version of Lovasz by introducing weight
vector into optimization

o Taking uniform edge weights of 1 reduces to original formulation for
unweighted graphs (strict generalization)



Weighted Theta Functions and Embeddings with
Applications to Max-Cut, Clustering, and Summarization

Table 1: Characterizations of weighted theta functions. In the first row are characterizations follow-
ing the original definition. In the second are kemel characterizations. The bottom row are versions
of the LS-labelling [14]). In all cases, ||u;|| = ||c|| = 1. A refers to the adjacency matrix of G.

Unweighted Node-weighted Edge-weighted
I 1 min min max -
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Weighted Theta Functions and Embeddings with
Applications to Max-Cut, Clustering, and Summarization

e Computing weighted theta function can be done via SDP

(semidefinite programming), but too slow in many cases

o Extends fast approximation known as SVM-theta 1introduced by Jethava
et al. to weighted graphs

e Using a truncated SVD for low rank approximation combined
with a one-class SVM, almost quadratic time complexity
can be achieved

e Maximizing the expression used in the weighted theta
function can be viewed as finding a subset of nodes that
is large and diverse



Weighted Theta Functions and Embeddings with
Applications to Max-Cut, Clustering, and Summarization

e Applies weighted theta function to clustering problems
o The weighted Lovasz number 1is used as the number of clusters, which
handles the problem of having to guess the optimal number of clusters
o The support vectors calculated during optimization are used as
initialization parameters

e Handles the max-cut graph problem through the use of the
geometric embedding resulting from the proposed method



Weighted Theta Functions and Embeddings with
Applications to Max-Cut, Clustering, and Summarization

e Also applies proposed method as well as variants to the

problem of correlation clustering
o Theta-means, theta-means with random initialization, and k-means with
theta initialization
e Theta-means achieves the highest F1 score, followed by

theta-means with random initialization
o Also significant speedups in time complexity when compared to other
approaches



Weighted Theta Functions and Embeddings with
Applications to Max-Cut, Clustering, and Summarization

Table 3: Clustering of the (mini) newsgroup dataset. Average (and std. deviation) over 3 splits. k is
the average number of clusters predicted. The true number is & = 16.

F, k Time
VoTe/BOEM 31.294+4.0 124 8.7m
Pivor/BOEM 30.07+3.4 120 14m
BEsT/BOEM 29.67+3.4 112 13m
FirsT/BOEM 26.76 £ 3.8 109 14m
k-MEANS+RAND 17.314+13 2 15m
k-MEANS+INIT 20.06 + 6.8 3 5.2m
-MEANS+RAND 30.60+4.3 25 45s
-MEANS 36.20+4.9 25 11s




Weighted Theta Functions and Embeddings with
Applications to Max-Cut, Clustering, and Summarization

e Also applied method to overlapping correlation clustering

and document summarization
o In document summarization, the weighted theta expression optimization
is viewed as the trade-off between brevity and relevance (analogous
to size and diversity)

e Conclusion: Extension of Lovasz theta function to
weighted graphs can be applied to various machine
learning problems, with the SVM approximation yielding
significant speedups



Cross-Domain Matching for Bag-of-Words Data via Kernel
Embeddings of Latent Distributions (2015)

e Authors: Yuya Yoshikawa, Tomoharu Iwata, Hiroshi Sawada,
Takeshi Yamada

e Proposes method for finding relationships between
documents across domains via embedding into a shared
latent space

e Given an instance in a source domain, objective 1is to
find most related instance in a target domain



Cross-Domain Matching for Bag-of-Words Data via Kernel

Embeddings of Latent Distributions (2015)

Previous work: Canonical Correspondence Analysis (CCA)
and kernel CCA

o Linear (or other kernel-based) projection into latent space that
maximizes correlation between instance pairs

o Kernel CCA struggles with different words that are semantically
equivalent (i.e. “PC” vs “computer?”)

Proposed method associates each feature with a vector 1in
the latent projection space, and then instances are
represented as distributions over latent vectors



Cross-Domain Matching for Bag-of-Words Data via Kernel
Embeddings of Latent Distributions (2015)

Proposed method differs from CCA and kernel CCA in that
it represents each instance as a set of latent vectors
(as opposed to a single mapping), and can thus learn more

complex representations
o Also method is discriminative as opposed to generative

Kernel embedding embeds probability distribution P on
space X into a reproducing kernel Hilbert space (RKHS)
specified by the chosen kernel

Difference between embeddings of samples can be
calculated via square of maximum mean discrepancy (MMD)



Cross-Domain Matching for Bag-of-Words Data via Kernel

Embeddings of Latent Distributions (2015)

Training is done via considering instance pairs of the
form (source, target)

Each feature of each instance is translated into a vector
in the projection space

o Goal is to reflect co-occurrence of different but related features
via kernel calculations between instances

Kernel embedding of distribution of features is used to

represent distribution of latent vectors for instances
o Difference between instance distributions computed via MMD



Cross-Domain Matching for Bag-of-Words Data via Kernel
Embeddings of Latent Distributions (2015)

Proposed model assumes that related instances have
similar distributions of latent vectors

Latent vectors are estimated via maximizing the posterior
probability, or equivalently minimizing the negative log
of the posterior probability

o Gradient-based optimization
Instance matching is then done via finding the minimal

distance between the source instance and a target
instance via MMD



Cross-Domain Matching for Bag-of-Words Data via Kernel
Embeddings of Latent Distributions (2015)

Setup of proposed method: used Gaussian embedding kernel
and selected optimal hyper-parameters via validation data
Compared proposed method to: K-nearest neighbors (KNN),
CCA, kernel CCA, bilingual latent dirichlet allocation,
and kernel CCA with kernel embeddings of distributions
Evaluated via precision@k

Tested on Wikipedia document dataset over German,
English, Finnish, French, Italian, and Japanese



Cross-Domain Matching for Bag-of-Words Data via Kernel
Embeddings of Latent Distributions (2015)
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Figure 2: Precision of matching prediction and its standard deviation on multi-lingual Wikipedia
datasets.



Cross-Domain Matching for Bag-of-Words Data via Kernel
Embeddings of Latent Distributions (2015)

e Also tested proposed method on matching documents and

tags, and images and tags

o Had similar results to previously shown data, proposed method
outperformed compared methods

e Conclusion: Representing instances as distributions over
latent vectors in a projected space can capture more
semantic information and can lead to better performance
on relationship identification tasks



Embed to Control: A Locally Linear Latent Dynamics Model
for Control from Raw Images (2015)

e Authors: Manuel Watter, Jost Tobias Springenberg, Joschka
Boedecker, Martin Riedmiller

e Introduces Embed to Control (E2C), a deep generative
model that learns to generate image trajectories from a
latent space in which dynamics are constrained to be
locally linear

e Considers problem of nonlinear dynamic system control for
robots and autonomous agents

e Use of Stochastic Optimal Control (SOC) methods would be
computationally infeasible considering the
high-dimensionality of sensory data



Embed to Control: A Locally Linear Latent Dynamics Model
for Control from Raw Images (2015)

e Problem formulation: goal is to map high-dimensional
images to low-dimensional vectors, and then solve optimal
control using the mapped vectors

e Proposes SOC formulation of problem using latent vectors
o Optimal controls for trajectories of a specified length T can be
computed via minimizing a cost function for expected future cost
o Yields a locally linear-quadratic-Gaussian formulation at each time
step that can be solved via existing SOC algorithms



Embed to Control: A Locally Linear Latent Dynamics Model
for Control from Raw Images (2015)

Must learn a low-dimensional latent representation with
specific properties
o Representation must capture sufficient information about -image

o Must allow for accurate prediction of the next latent state
o The prediction of the next latent state must be locally linearizable

Proposes an inference model for sampling latent states

o Based on a diagonal Gaussian distribution whose properties are
computed via a neural network

A generative model 1is built from inference model to
generate image samples from latent samples



Embed to Control: A Locally Linear Latent Dynamics Model
for Control from Raw Images (2015)

e Transformation parameters are predicted from latent

samples via a neural network (transformation network)

o Requires that latent state transition distribution be similar to
actual state transition distribution

e Model is trained via data set consisting of observation
tuples and corresponding controls

o Parameters for inference, transition, and generation are learned via
minimizing a variational bound on negative log-likelihood



Embed to Control: A Locally Linear Latent Dynamics Model
for Control from Raw Images (2015)

e Model is learned via minimizing loss function based on
log-likelihood and KL divergence

o Computed via stochastic gradient descent

e Model training: considered both a standard (max 3 layer,
fully connected) neural network as well as deep
convolutional neural networks

e Variant: model estimating dynamics as a non-linear
function

e Baselines: standard variational autoencoder (VAE) and
deep autoencoder (AE)



Embed to Control: A Locally Linear Latent Dynamics Model
for Control from Raw Images (2015)

e Applies 1iterative Linear Quadratic Regulation (iLQR) and
Approximate Inference Control (AICO) to perform optimal
control in latent space

e Control in planar systems: autoencoders fail to discover
underlying structure of the state space

AE VAE VAE with slowness
S b e

Figure 2: The true state space of the planar system (left) with examples (obstacles encoded as circles)
and the inferred spaces (right) of different models. The spaces are spanned by generating images for
every valid position of the agent and embedding them with the respective encoders.



Embed to Control: A Locally Linear Latent Dynamics Model
for Control from Raw Images (2015)

e Swing-up pendulum task: Swing-up and balance an
underactuated pendulum from resting position

e More complex dynamical tasks: Cart-pole trajectory and
robot arm trajectory

101 | R
NIRRT

Figure 4: Left: Trajectory from the cart-pole domain. Only the first image (green) is “real”, all
other images are “dreamed up™ by our model. Notice discretization artifacts present in the real
image. Right: Exemplary observed (with history image omitted) and predicted images (including
the history image) for a trajectory in the visual robot arm domain with the goal marked in red.




Embed to Control: A Locally Linear Latent Dynamics Model
for Control from Raw Images (2015)

Table 1: Comparison between different approaches to model learning from raw pixels for the planar
and pendulum system. We compare all models with respect to their prediction quality on a test set
of sampled transitions and with respect to their performance when combined with SOC (trajectory
cost for control from different start states). Note that trajectory costs in latent space are not neces-
sarily comparable. The “real” trajectory cost was computed on the dynamics of the simulator while
executing planned actions. For the true models for s;, real trajectory costs were 20.24 4-4.15 for the
planar system, and 9.8 =+ 2.4 for the pendulum. Success was defined as reaching the goal state and
staying e-close to it for the rest of the trajectory (if non terminating). All statistics quantify over 5/30
(plane/pendulum) different starting positions. A f marks separately trained dynamics networks.

Algorithm State Loss Next State Loss Trajectory Cost Success
log p(x¢/Xe)  log p(Xes1|Xe, ue) Latent Real percent
Planar System

AE' 11.5+ 978 3538.9 = 1395.2 13256 £ 81.2 2733+ 16.4 0%

VAE' 3.6 £ 18.9 652.1 = 930.6 43.1 =208 913 £ 164 0%

VAE + slowness’ 10.5 £ 228 104.3 £ 235.8 47.1 =205 89.1 =16.4 0%
Non-linear E2C 8.3x55 11.3 £ 10.1 198 £9.8 423 £ 164 96.6 %
Global E2C 6.9 =32 9346 125 £3.9 27.3+9.7 100 %
E2C 7.7+20 9.7+32 103 =2.8 251+53 100 %

Inverted Pendulum Swing-Up

AE' 8.9+ 1003 13433.8 = 6238.8 12859 =355.8 1947 =448 0%

VAE' 75477 8791.2 = 17356.9 497.8 £ 1294 23721+ 41.2 0%

VAE + slowness”  26.5 + 180 779.7 = 633.3 4195 =858 188.2 £ 43.6 0%

E2Cnolatent KL  64.4 =328 87.7 £ 64.2 489.1 =875 2132 £ 843 0%
Non-linear E2C 59.6 £ 252 72.6 = 34.5 3133 £65.7 374124 6333%

Global E2C 1155 £56.9 1253 £ 62.6 628.1 £45.9 125.1 = 10.7 0%

E2C 84.0 £ 508 80.3 =429 2750 £16.6 154 = 34 90 %



Embed to Control: A Locally Linear Latent Dynamics Model
for Control from Raw Images (2015)

e Conclusion: Embed to Control (E2C) model for stochastic
optimal control on high-dimensional image streams can
find embeddings that can produce performance that is
competitive with performance achieved by performing
optimal control on the real system model -itself

e Method extends similar work concerning deep autoencoders
for control tasks and enforcing desired transformations
during learning



Community Detection via Measure Space Embedding (2015)

e Authors: Mark Kozdoba, Shie Mannor

e Proposes algorithm to detect communities via embedding
graphs in a measure space using random walks, and then
applying k-means

e Problem: 1identifying subsets of vertices in graphs 1in
which there is dense connectivity (communities)

e Presents Diffusion Entropy Reducer (DER) algorithm for
non-over lapping community detection



Community Detection via Measure Space Embedding (2015)

e Algorithm is evaluated on random graph benchmarks (LFR
models)

e Algorithm can be modified to detect overlapping
communities in specific cases

e DER also reconstructs (with high probability) the
partition of the p,g-stochastic block model (the
generative model for the considered random graphs)



Community Detection via Measure Space Embedding (2015)

e Related work: stochastic block model (p,q-SBM) as a

generative model for non-overlapping communities
o Distribution on the graphs over a vertex set V

e Consider a graph G with set of vertices V and define
pi(i) to be the stationary random walk based on the
degree of vertex i (sum of outgoing edge weights)

e Choose a start vertex randomly from pi and perform a
random walk of L steps yielding a sequence of L+1

vertices
o Perform this N times to obtain N such sequences



Community Detection via Measure Space Embedding (2015)

e The measure of a vertex i 1is the average of the
distributions of the random walks of lengths 1 up to L
from 1

e Perform k-means using the computed measures of the

vertices
o Finds optimal partition of vertices of the graph

e DER can be interpreted as seeking a partition that
maximizes information between current state and the next
step from 1t



Community Detection via Measure Space Embedding (2015)

e Since DER 1is a k-means algorithm, its results are
somewhat contingent on the random initialization of
partitions

e Walktrap algorithm is similar to DER 1in that it also
calculates measures, but employs and optimizes them
differently

e Infomap algorithm attempts to minimize information
required to transmit a random walk across a graph through
a channel (coding is done via clusters)



Community Detection via Measure Space Embedding (2015)

e LFR benchmark model: node degrees and community sizes
have power law distribution

e Given a set of computed communities and a ground truth
set of communities, “closeness” can be measured using

normalized mutual information (NMI)
o Only works for non-overlapping communities, although extensions exist

e DER tested on graphs with N = 1000 nodes and N = 5000
nodes with 10 to 50 communities or 20 to 100 communities



Community Detection via Measure Space Embedding (2015)

e DER can be extended to overlapping communities by
defining a function corresponding to the probability that
a walk started in a specific partition given that it

ended at a specific vertex
o Can be used to compute groups of likely overlapping communities

e Results showed that DER outperformed other models for
overlapping community detection in graphs with sparse
overlaps



Community Detection via Measure Space Embedding (2015)

e Proves analytic bounds on the probability that DER
recovers partitions of a graph after one 1iteration from a

given random initialization
o Uses the non-ideal nature of the random initialization in tandem with
linearization argument



References (2015)

e http://papers.nips.cc/paper/5971-space-time-local-embeddi
ngs.pdf

e http://papers.nips.cc/paper/5972-a-fast-universal-algorit
hm-to-learn—-parametric-nonlinear-embeddings.pdf

e http://papers.nips.cc/paper/5992-compressive-spectral-emb
edding-sidestepping-the-svd. pdf

e http://papers.nips.cc/paper/5969-sparse-local-embeddings-
for—-extreme-multi-label-classification.pdf



http://papers.nips.cc/paper/5971-space-time-local-embeddings.pdf
http://papers.nips.cc/paper/5971-space-time-local-embeddings.pdf
http://papers.nips.cc/paper/5972-a-fast-universal-algorithm-to-learn-parametric-nonlinear-embeddings.pdf
http://papers.nips.cc/paper/5972-a-fast-universal-algorithm-to-learn-parametric-nonlinear-embeddings.pdf
http://papers.nips.cc/paper/5992-compressive-spectral-embedding-sidestepping-the-svd.pdf
http://papers.nips.cc/paper/5992-compressive-spectral-embedding-sidestepping-the-svd.pdf
http://papers.nips.cc/paper/5969-sparse-local-embeddings-for-extreme-multi-label-classification.pdf
http://papers.nips.cc/paper/5969-sparse-local-embeddings-for-extreme-multi-label-classification.pdf

References (2015) (continued)

http://papers.nips.cc/paper/5849-semi-supervised-convolut

ional-neural-networks-for—-text-categorization-via-region-

embedding.pdf

http://papers.nips.cc/paper/5902-weighted-theta-functions

—and-embeddings-with-applications-to-max-cut-clustering-a

nhd-summarization.pdf

http://papers.nips.cc/paper/5959-cross—-domain—-matching—-fo

r-bag-of-words—-data-via-kernel-embeddings-of-latent-distr

ibutions.pdf



http://papers.nips.cc/paper/5849-semi-supervised-convolutional-neural-networks-for-text-categorization-via-region-embedding.pdf
http://papers.nips.cc/paper/5849-semi-supervised-convolutional-neural-networks-for-text-categorization-via-region-embedding.pdf
http://papers.nips.cc/paper/5849-semi-supervised-convolutional-neural-networks-for-text-categorization-via-region-embedding.pdf
http://papers.nips.cc/paper/5902-weighted-theta-functions-and-embeddings-with-applications-to-max-cut-clustering-and-summarization.pdf
http://papers.nips.cc/paper/5902-weighted-theta-functions-and-embeddings-with-applications-to-max-cut-clustering-and-summarization.pdf
http://papers.nips.cc/paper/5902-weighted-theta-functions-and-embeddings-with-applications-to-max-cut-clustering-and-summarization.pdf
http://papers.nips.cc/paper/5959-cross-domain-matching-for-bag-of-words-data-via-kernel-embeddings-of-latent-distributions.pdf
http://papers.nips.cc/paper/5959-cross-domain-matching-for-bag-of-words-data-via-kernel-embeddings-of-latent-distributions.pdf
http://papers.nips.cc/paper/5959-cross-domain-matching-for-bag-of-words-data-via-kernel-embeddings-of-latent-distributions.pdf

References (2015) (continued)

e http://papers.nips.cc/paper/5964-embed-to-control-a-local
ly-linear-latent-dynamics—-model-for-control-from-raw-imag

es.pdf
e http://papers.nips.cc/paper/5808-community-detection-via-

measure-space—embedding.pdf



http://papers.nips.cc/paper/5964-embed-to-control-a-locally-linear-latent-dynamics-model-for-control-from-raw-images.pdf
http://papers.nips.cc/paper/5964-embed-to-control-a-locally-linear-latent-dynamics-model-for-control-from-raw-images.pdf
http://papers.nips.cc/paper/5964-embed-to-control-a-locally-linear-latent-dynamics-model-for-control-from-raw-images.pdf
http://papers.nips.cc/paper/5808-community-detection-via-measure-space-embedding.pdf
http://papers.nips.cc/paper/5808-community-detection-via-measure-space-embedding.pdf

