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1. Black-box Adversarial Attacks with Limited

Queries and Information
Andrew llyas Logan Engstrom Anish Athalye Jessy Lin

e ICML 2018
* Propose method for 3 different black-box settings

e Goal: Limit queries attack

e Black-box attacks:
e 1. Set a substitute model
e 2. Approximate Gradient



Settings of black-box attack

e 1. With output probability
» 2. With output score but not probability (Partial information)
* 3. Have label only



Black-box attack with probability

* Estimate gradient

directly using small Algorithm 1 NES Gradient Estimate

pertu rbation Input: Classifier P(y|x) for class y, image x
Output: Estimate of V P(y|x)
Parameters: Search variance o, number of samples n,
image dimensionality NV
g < 0,
for: =1tondo
U; < N(ON, IN-N)
g+ g+ Pylx +0-u;) - u;
g« 9g—Plylr—0-uw) u
end for
return ;' —g




Black-box attack with partial score

e Start from a sample with target class

* Repeat:

* Do a projection from current sample to the
nearest of original sample

* Perturb the image to maximize the
probability of target class

Algorithm 2 Partial Information Attack

Input: Initial image =z, Target class y,q,, Classifier
P(y|z) : R™ x Y — [0, 1]* (access to probabilities for y
in top k), image x
Output: Adversarial image x,4, With ||Z44, — || < €
Parameters: Perturbation bound €,4,, starting pertur-
bation ¢;, NES Parameters (o, N, n), epsilon decay d,,
maximum learning rate 7maq., minimum learning rate
Nmin
€ < €p
Tady — image of target class y,q.
Tady < CLIP(Zogy, T — €, + €)
while € > €,4, or max, P(y|z) # Yad, do
g < NESESTGRAD(P(Yadv|Tadv))
N < Mmaz
.f‘ml,. — Tadv — NG
while not y,4, € TOP-K(P(-|Z44,)) do
if 7 < Npnin then
€ ¢ €+ 0,
0 ¢ 0c/2
Tadv < Tady
break
end if
VR
ZTadv < CLIP(Zgdy — N9, T — €, + €)
end while
Tadv ¢ Tadv
€ ¢ € — O
end while
return x4,




With pure label

* Assign a score R of an adversarial sample:
 Ranking of the adversarial label: R(x;) = k — rank(y 4y|x¢)

* Sample multiplerandom perturbations around x;, do the check of the R
score( to get some sort of robustness): S(x;) = Esy[—y, u[R(x¢ + 6)]

e Use S score as the score in the partial algorithm



Experiment result

Skiing 91%

Ski 89%

Threat model Success rate Median queries

Piste 86%

QL 99.2% 11,550 .
PI 93.6% 49,624
LO 90% 54,063

Winter Sport

SkiPale

Table 1. Quantitative analysis of targeted ¢ = (.05 adversarial at-

tacks in three different threat models: query-limited (QL), partial- Figure 4. The Google Cloud Vision Demo labeling on the unper-
information (PI), and label-only (LO). We perform attacks over turbed image.

1000 randomly chosen test images (100 for label-only) with ran-
domly chosen target classes. For each attack, we use the same
hyperparameters across all images. Here, we report the overall
success rate (percentage of times the adversarial example was winter

classified as the target class) and the median number of queries lce
required. i

Dog 91%

Dog Like Mammal 87%

Snow 84%

Arctic 70%

Freezing 60%

Glacial Landform

Figure 5. The Google Cloud Vision Demo labeling on the ad-
versarial image generated with /.. bounded perturbation with
e = 0.1: the image is labeled as the target class.



2. Practical Black-Box Attacks against Machine
Learning

Nicolas Papernot, Patrick McDaniel, lan Goodfellow, Somesh Jha, Z. Berkay Celik, Ananthram Swami

e 2017 ACM Asia Conference on Computer and Communications
Security

* Two steps:
* 1. Query to build a substitute model
e 2. Craft adversarial samples



. . . Algorithm 1 - Substitute DNN Training: for oracle O,
S u St I t u te D N N t ra | n I n g a maximum number max, of substitute training epochs, a

substitute architecture F', and an initial training set So.

Input: 0, max,, So, A
* Random Noise: No, as noise doesn’t S Sl
. . . . 3: // Label the substitute training set
representinput distribution D {@0w@) zes,)

// Train F on D to evaluate parameters Or
Or < train(F, D)

* [dentifying directions in which the
) . . /] Perform Jacobian-based dataset augmentation
model’s output is varying, around an 8 Sy (G4 A-sen(Jr[O@)) : & € 5,} US,

9: end for

initial set of training points. 10: return 0

* “Jacobian-based dataset augmentation”



“Jacobian-based dataset augmentation”

* Goal: Find the direction of varying output

Spr1 ={Z+ X -sgn(Jp[O@)]): T€ S,}US,

Oracle DNN O
Substitute Training
Dataset Collection S / ()
S()
\ Substitute Dataset Substitute DNN F ) Jacobian-based
Labeling Training Dataset Augmentation
/ S/) Fp

Substitute DNN F pp+1
Architecture Selection

Spr1 = {Z+ Npy1 - sgn(Jp[O(@)]) : £ € S,}US,




Experiment result

DNN | Accuracy | Accuracy | Transferability
1D (p=2) | (p=6) (p=6)
A 30.50% 82.81% 75.74%
F 68.67% 79.19% 64.28%
G 72.88% 78.31% 61.17%
H 56.70% 74.67% 63.44%
I 57.68% 71.25% 43.48%
J 64.39% 68.99% 47.03%
K 58.53% 70.75% 54.45%
L 67.73% 75.43% 65.95%
M 62.64% 76.04 62.00%

Table 1: Substitute Accuracy at p = 2 and p = 6 substi-
tute epochs and Transferability of Adversarial Samples:
for e = 0.4 after p = 6 substitute epochs.



3. Simple Black-Box Adversarial Perturbations
for Deep Networks

* Arxiv 2016
* Reject by ICLR 2017



Simple attack — Change 1 pixel

* Change 1 pixel —
with enormous
change

* P=100 in their
example

Algorithm 1 RANDADV (NN)

1:

AN

10:
11:
12:
13:

Input: Image I with true label ¢(I) € {1,...,C}, perturbation factor p € R, and a budget U € N on the
number of trials
Output: A randomized estimate on the fraction of critical pixels in the input image [
i = 1, critical = 0
while i < U do

randomly pick a pixel (x, z,y)

compute a perturbed image I,(,x'y) = PERT(I,p,x,y)

if ¢(I) ¢ m(NN(I$*¥)),1) then

critical < critical + 1

end if

t—1+1
end while
{The algorithm succeeds in generating an adversarial image if it finds at least one critical pixel}

critical
return B s

159500 220 { TO00) 2oy e
g T p x sign(I(b,u,v)) otherwise



Prior convictions: Black-box Adversarial Attacks
with Bandits and Priors

Andrew llyas, Logan Engstrom, Aleksander Madry

* Summary:

* Claim gradient estimation is an accurate and easy way to generate adversarial
samples

e Claim prior of the gradient is important, and define two such priors
* Propose bandit to estimate the priors



Background: Adversarial attack

* Adversarial sample problem:

/ /
v’ = argmax L(x',y)
x|’ —x|p<eép

* Lis not convex, therefore, often solved by first order methods, especially
projected gradient descent:

L] = HBP(:B,G) (ajl—l T 773l)

S| = HaBp(O,l)va:L(xl—lv y)
* B, (x, €) stands for [, norm ball of radius € around x



Background: Black-box attacks

* We can estimate the gradient with direct value queries:

D,f(x)=(V.,.f(x),v) = (f(x+ dv)— f(x)) /0

* Direct way:
d d

V.L(x,y) = Z e (L(x + dep,y) — L(x,y)) /6 =~ Z e (VieL(x,y),er)

k=1 k=1
* However, requires a lot of queries.
* Inception net on Imagenet has 268,203 dims
e 3%224%*224 = 150,528
« Which means 10° level of queries



However, don’t need perfect gradient

* With only part of gradient, still possible to generate adversarial
samples on ImageNet
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Figure 1: The fraction of correctly estimated coordinates of sgn(V,L(x,y)) required to successfully execute
the single-step PGD (also known as FGSM) attack, with € = 0.05. In the experiment, for each k, the top k
percent — chosen either by magnitude (top-k) or randomly (random-k) — of the signs of the coordinates are
set correctly, and the rest are set to +1 or —1 at random. The adversariality rate is the portion of 1,000
random ImageNet images misclassified after one FGSM step. Observe that, for example, estimating only 20%
of the coordinates correctly leads to misclassification in the case of more than 60% of images.



Define: Gradient estimation problem

* Forinput pair (x,y), let g* = V.L(x,y), the goal is to find a unit
vector g, that maximize

with small number of queries



Baseline: Least square method

* Solve an approximation of the problem:
. mjn||§|| s.t.Ag =z
g 2
e Where A is a random Gaussian Matrix

* This is the same with NES(Natural Evolution Strategies), which is a
query efficient black-box attack.

* Proved to be optimal

Theorem 2 (Least-squares optimality [BBEKY13]). For a linear regression problem with known Gaussian
errors, and a fixed number of predictors p, the least-squares estimator is the optimal M-estimator of the latent
vector.



Prior

* Though the random estimator is optimal, we can still improve it by
given it a prior on its random sampling

 Random generator is optimal in general case, however we have extra
information, which can be used to improve the method



Time-dependent prior

* In the projected gradient descent B 00 — LI
process, it requires multiple gradients = (4| ]
among points within a fixed 7 .84 ] -
boundary 2080 ]

. 0 50 100 150 200

* Clearly they can be used as a prior steps

* Cos similarity result show this works

Figure 2: Cosine similarity between the gradients at

¢ Slmply use the t-1 Step g radient as the current and previous steps along the optimization
the prior of gradient at time t trajectory of NES PGD attacks, averaged over 1000

random ImageNet images.



Data-dependent prior

* Pixels near each other tends to be similar, therefore, the gradient of
them are also tend to be similar

* Measure the cos-similarity to an average blurred input:
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Figure 3: Cosine similarity of “tiled” image gradient
with original image gradient versus the length of the
square tiles, averaged over 5,000 randomly selected
ImageNet images.



Bandit

* Action: The gradient chose
e Loss function: 4.(g) = —(VL(z,v),9) , Unknown, but can be estimated

e Use “reduction from bandit information”
e Update rule:

('ut_l +n- Ay if ||oi_1 + 1 Ayl < 1
Uy = A(’Uf_l,At) g H(»‘Q ['Ut_]_ + 77 . Af] — < 'l’t—1+"l'At

L |ve—1+m-Ag]]2

otherwise,



Algorithm: estimating the gradient

Algorithm 2 Single-query spherical estimate of V,(VL(x,y),v)

procedure GRAD-EST(z,y,v)
u < N(0,%I) // Query vector
{q1,q2} < {v+ du,v — du} // Antithetic samples
// Incur bandit loss:

1:
2
3
4:
> li(q1) = —(VL(z,y),q1) = L(z.y)—L(z+teq1,y)
6
7
8
9

€

gt(QQ) - _<VL(:B’ y)*Q2> ~ Lizy)-Lzteqs.y)

€
€:(q1)—%:(q2) ,, _ L(z+eqa,y)—L(z+eq1,y)
A F L 5 L u — 66 u
// Note that due to cancellations cancels we can actually evaluate A with only two queries to L

return A




Combined two optimization together

Algorithm 3 Adversarial Example Generation with Bandit Optimization for /5 norm perturbations

1: procedure ADVERSARIAL-BANDIT-L2(2;,it. Yinit)
2 // C(-) returns top class
3 vo = 014

4: ro < Tinit // Adversarial image to be constructed

5: while C'(z) = yinit do

6 gt < Vi—1

7 Ty — Tp_1 +h- quﬁ

8 A < GRAD-EST(x¢_1, Yinit-ve—1) // Estimated Gradient of ¢,
9 v <= Ly i1 + 1 - Ay

10: t—t+1
return r;_q




