Generating and designing DNA with deep

generative models
Nathan Killoran, Leo J. Lee, Andrew Delong, David Duvenaud,
Brendan J. Frey

arxiv preprint 2017

Reviewed by : Jack Lanchantin

IDepartment of Computer Science, University of Virginia
https://qdata.github.io/deep2Read/

/32

https://qdata.github.io/deep2Read/

QOutline
Intro

Generative Design of DNA
GAN

Generative Optimization

Joint Method of GAN and Activation Maximization
Experiments

1. Generative DNA Model
1.1: Exploring the Latent Encoding

1.2: Capturing Exon Splice Site Signals
2. Designing DNA

Generative Modeling Architecthures

«O>» «Fr <

it

v
it
v

Do
1/32

Generative Models

Generative models are good for many uses, including:
» Simulating data
» Exploring the space of possible data configurations
» Tuning generated data to have specific properties

» Inventing novel, unseen configurations

)

S

This Paper

» Goal: create synthetic DNA sequences and tune these
sequences to have certain desired properties.

» Methods:

1.

GAN-based deep generative network for the creation of new
DNA sequences

Activation maximization method for designing sequences with
desired properties

Joint method of 1 & 2

Outline

Generative Design of DNA

3/32

Outline

Generative Design of DNA
GAN

/32

GAN Generator

Generator G transforms continuous variable z into synthetic
data, G(z), where z is a high-level latent encoding for the
data

Discriminator D produces a continuous valued number output
D(x) to score between real and generated output.

Discriminator’s training objective:

maxg, Ldisc = maxg,[Ex~p

reaID(X) - EzNPzD(G(Z))] (1)
Generator’s training objective:

Mg, Lgen = Maxg, [Ezp, D(G(2))] (2)

32

GAN Generator for DNA

Wasserstein GAN (Arjovsky et al.): discriminator’s output is
adapted to an arbitrary score D(x) € R, and an optimization
penalty is introduced to bound the discriminators gradients,

making the model more stable and easier to train

real data
Ofd
{ cf??s T~ -
Latent
variable 04044
D~ || el - sz
g’ Discriminator
generated
data

Generator

32

Outline

Generative Design of DNA

Generative Optimization

/32

Generative Optimization

> Instead of generating realistic-looking data, the focus in this
alternative approach is to synthesize data which strongly
manifests certain desired properties

6/32

Activation Maximization for DNA

» Let P be a function which predicts a target property t = P(x)
(e.g, x is a dog)

» P can be generalized to some combination of explicit
functions {f;} and learned functions {fy,}:

P(x) =D aifi(x) +) Bify(x) (3)
i J
» Activation Maximization: starting with an arbitrary x,
change x to maximize t by following the gradient w.r.t x:
X — x + eVt (4)

» Final sequence can be found by taking a softmax over the 4
characters at each position, and taking an argmax.

Outline

Generative Design of DNA

Joint Method of GAN and Activation Maximization

32

Joint method

» One drawback with activation maximization is that it ignores
realism of data in its pursuit of optimal attributes

» E.g., such images are often exaggerated or nightmarish, with
the target property manifesting in unrealistic ways

Flamingo

8/32

Joint method: Plug & Play Generative Network

» “plug & play generative networks” (Nguyen et. al.):
combine activation maximization with a generative model

> ldea: Let a generator capture the generic high-level structure
of data, while using predictors to fine-tune specific properties

Joint method: Plug & Play Generative Network

This joint architecture requires two components:

» Generator G transforms latent codes z into synthetic data x
(e.g. a trained GAN generator), and a predictor P, mapping
data x to the corresponding attributes t = P(x).

» The two modules are plugged back-to-back, so that they form
a concatenated transformation z — x — t

TG
z — —_ N — — = (=06

Latent G Target
variable generated N z
Generator data Predictor V’}'

10/32

Joint method: Plug & Play Generative Network

» Goal is still the same as activation maximization: tune data to
have desired properties

» To do this, we calculate the gradient of the prediction t with
respect to the generators latent codes z:

ot Ox;
Vit = Z Ox; 0z Z ax, 0z (5)

11/32

QOutline

Intro

Generative Design of DNA
GAN

Generative Optimization
Joint Method of GAN and Activation Maximization
Experiments
1. Generative DNA Model
1.1: Exploring the Latent Encoding

1.2: Capturing Exon Splice Site Signals
2. Designing DNA

Generative Modeling Architecthures

«O)>» «F)» « =>»

«E

Do
11/32

Outline

Experiments
1. Generative DNA Model

11/32

Experiment 1: Generative DNA Model

» Perform several experiments intended to more fully
understand the capabilities of the DNA generator architecture

12/32

Exploring the Latent Encoding

» Trained a WGAN model on a dataset of 4.6M
50-nucleotide-long sequences encompassing chr 1 of hg38

» Consider interpolation between points in the latent space.
Show how the generated data varies as we traverse a straight
line between two arbitrary latent coordinates z; and z.

a) osition #: b) argmax decodin:
3 g 4 5 d g

Z) TR ACCTCCCCTTCA
AGCTTGGCTTGA
AGGATGGCTTGAGGTTA
CTTCAGGTTAGACTATTTE
CCTCAGCTTTGACTATTT?
CCACAGCTCTGACTATTT
c CTCTCATTATTTAATT.
CCACAGCTCTGATTATTGAATT.
CCACACCTCTGATTATTGAAT
CAACACCTCTGATTATTGAATCAT

z2

13/32

1.1:

Exploring the Latent Encoding

» Reflection in the latent space: z — —z

» Fix a sequence x* (e.g. all “G") and find, via gradient-based
search, 64 different latent points z; which each generate x* ,
i.e., G(z)) = x* for all z

» Reflect each of these latent points and decode the
corresponding generated sequences

a)
{Zi}fql
LA LLLELE- LR L E RIS R R L A - R A

o

EERELERM IS LR E R T T 88588

14 /32

1.1 Verification of GAN: Distance to training sequences

0.40 1

0.35
0.30

alized)

£0.25

o
£o0.20

50.151
[=]

L&)
0.10

0.05

0.00

0 2 B 6 8 10 12 14

0 Test sequences
Generated sequences

Edit distance to training set

Do
15/32

1.2:

Capturing Exon Splice Site Signals

» Trained GAN on 116k 500-nt-long human genomic sequences,

each containing exactly one exon (varying between 50-400 nt).

» Included an additional flag such that nucleotides within an
exon = 1, and non-exon positions = 0

» Model must simultaneously learn to separate exons while also
capturing the statistical information of nucleotides relative to
these exon borders (splice sites)

16

32

1.2: Capturing Exon Splice Site Signals

> Used the generated flag positions to align the corresponding
generated sequences (taking the first/last value above 0.5 as
the start/end of the exon)

» Model has picked up on various splice site signals

] Upstream intron———Exon—~ **]~— Exon Downstream
intron
Training data 3 '] A £10]
e xx GOV) adV1AAL,
= T N = - - - :
20 20
Generated data 5'"] A 210]
= e =z S¥s == -’_\eu_nT_‘i‘A;« ——
D 3 ' s - ool - :

17 /32

Outline

Experiments

2. Designing DNA

17 /32

Experiment 2: Designing DNA

» Run several experiments for designing DNA sequences
» The running theme will be DNA/protein binding

18 /32

2.1:

Explicit Predictor (PWM): Motif Matching

» Goal: design DNA sequences using an explicit biologically
motivated predictor function
» Predictor Function:
1. 1-D convolution scans across the data, computing the inner
product of a fixed PWM with every length-K subsequence
2. Select the convolutional output with the highest value to get
the final score for the sequence

> Used the joint method, employing a generator trained on
sequences from human chr 1

ﬂ) GRATTEA

b) TGAGAGTGATGTATT _AATTCATGCCTCACCTCTGCTTGCAGACTGTCA
[CCAATCAACTGGGGAGACAGGCCCAGAL CAATT AGAAAGTAATGAGCAC
GCCCTGL _TTTTAAGAAATACTGTTGCATCAGGGCAAATGTAAGATTTTG
TTTTGTTTGAGATCTGTGGGGTATGCT CAATTAAAGTCTGGACTACCAC
CTGATACTGAATGCAGATTTGAAGAACAAAG _TATTAAAACACATGCTT
GATCCCCAAGTGT[C AATT_AGAAGGAAGCTGGAGAATCCCCAAACTCTG
CAGCCACATCAGCTTACCTAA CAACT_ATGTGTTTTAAAACCAGCTTTG
TAGAATTTTTCTT CTATTAATGATGATCTAGGCTTACACAGGGACATCA
GACATTGCTTAGTCTGAGGGATACAGTGGGGAGTG . _TATTAARATCTCC

19/32

2.2: Learned Predictor (DeepBind): Protein Binding

» Goal: Explore the use of a predictor model which has been
learned from data — Design new sequences which have high
binding scores

» Oracle model To simulate the process of evaluating
candidate sequences, use a proxy model which is trained on
Chip-Seq data. This model can be queried with new designed
sequences to gauge their expected binding score

2.2: Learned Predictor: Protein Binding

GAN for generating new sequences

» Using only samples with oracle scores less than 40% binding
likelihood, train a gan to generate new sequences, and then
test the generated sequences on the oracle.

o

Counts (normalized) —
O = N W B U O N ®

Employed training data
Generated data

0.0 0.2 0.4 0.6 0.8 10
Oracle scores of sequences

21/32

2.2: Learned Predictor: Protein Binding
Optimizing Multiple Properties
1. Design DNA sequences which preferentially bind to one
protein in a family but not the other

2. Similarly, design sequences where two predictors model
binding of the same protein, but under two different molecular
concentrations

1.0

10 . -
s -ty « Training data
5 e :
Sos N @ o/ + Designed data
2 oM 3
w
[o]
S 0.6 o 0.6
3 =
S 2
oa S 04
© -
: E
= 02 = Training data = 02
o Designed data
0. 0.0
10 0.0 04 06 08 1

00 02 04 06 08 0.2
E2f4 binding score (500nM) 'Mad' binding score

22/32

Future Directions

» Train an encoder E which maps data back to latent codes:
E(x) = z, making it easier to find latent encodings for specific
sequences

» Build a conditional GAN model and combine it with the joint
architecture - allowing some properties to remain fixed while
others were tuned

» Domain adaptation. E.g. provide a map of where we want
certain components (introns, exons, promoters, enhancers) to
be, and a generative model would dream up plausible
sequences with the desired properties

Outline

Generative Modeling Architecthures

23/32

RNNs

Training: maximize the likelihood of predicting the next char
Generating: Sample the model's prediction at each time t and
feed back as the input to the next step t + 1 (arbitrarily long seqs)

» Can be trained to generate sequences in conditional manner,
producing outputs which have some desired property. Do this
by appending extra labelled data y (e.g. sentiment) to the
inputs x¢.

RNNs

Suitability for DNA
» No successful variant of activation maximization or plug &
play that operates on RNNs.
> Also, without a learned latent encoding, we are limited to
tune a conditional RNN for which we explicitly train the
model for (e.g. no flipping the sequence).

Deep Autoregressive Models

Training
> Instead of feeding inputs only one at a time and relying on the

network to memorize past inputs, we can alternatively show it
the entire past history up to that point

Generating
» Similar to RNNs, feed the history of previous predictions as
input for each time step.

» Can also be built as conditional models, enabling the
generation of sequences with tailored properties.

Deep Autoregressive Models

Suitability for DNA: Similar to RNNs, they require supervised
training with a labelled dataset and that these properties must be
chosen beforehand and built in during training.

Variational Autoencoders

> In contrast to the 2 previous models, VAEs have the ability to
learn a controllable latent representation of data in an
unsupervised manner

» By changing the latent variable z, we can modify the synthetic
data that the model generates.

Variational Autoencoders

» Encoder E: transforms data to latent variables, x — z

» Decoder (or generator) G: transforms latent variables to
generated data, z — x’

» VAEs use probability distributions rather than deterministic
functions to model these transformations

» To encode, we sample z from a distribution g(z|x)
» To decode, we do likewise for x from a distribution p(x|z).
» g and p are modelled via DNNs.

Variational Autoencoders

Training:
» Goal: make the error from x — z — x’ as small as possible

» For VAEs, this reconstruction error is given by
Lrecon = Ezwq(z|x)[_/0gp(x|z)] (6)

» In order to reconstruct successfully, the model must learn how
to capture the essential properties of the data within the
latent variable z

> Regularization encourages the latent codes to vary smoothly.
This is captured by a KL divergence term between g(z|x) and
a fixed prior on the latent space p(z) (e.g. normal)

» The full VAE objective which is minimized during training is

Erecon + DKL(q(Z‘X)Hp(Z)) (7)

30/32

Variational Autoencoders

Suitability for DNA:

> It has been observed that if we use a strong decoder network,
such as an RNN, VAEs will exhibit a preference to push the
KL divergence term to zero

» This causes the latent code to be ignored and the generative
process is handled completely by the decoder

» Without learning a meaningful latent code, such models are
no better than a standard RNN

31

All Methods

a)
X
T A A outputdata

C inputdata - -

c) d)
TGCA real data

7 7z
N SR
TTCA generated CCCTC
X data

D
(score:-52)

Figure 12: Generative neural network models shown with short example sequences: a) Recurrent
neural network; b) PixelCNN; ¢) Variational Autoencoder; d) Generative Adversarial Network. A
generic starting character (e.g., “>°) is used to prompt the RNN and PixelCNN at the first time step.

32/32

	Intro
	Generative Design of DNA
	GAN
	Generative Optimization
	Joint Method of GAN and Activation Maximization

	Experiments
	1. Generative DNA Model
	2. Designing DNA

	Generative Modeling Architecthures

