
Generating and designing DNA with deep
generative models

Nathan Killoran, Leo J. Lee, Andrew Delong, David Duvenaud,
Brendan J. Frey

arxiv preprint 2017

Reviewed by : Jack Lanchantin

1Department of Computer Science, University of Virginia
https://qdata.github.io/deep2Read/

1 / 32

https://qdata.github.io/deep2Read/

Outline

Intro

Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

Generative Modeling Architecthures

1 / 32

Generative Models

Generative models are good for many uses, including:

I Simulating data

I Exploring the space of possible data configurations

I Tuning generated data to have specific properties

I Inventing novel, unseen configurations

2 / 32

This Paper

I Goal: create synthetic DNA sequences and tune these
sequences to have certain desired properties.

I Methods:
1. GAN-based deep generative network for the creation of new

DNA sequences
2. Activation maximization method for designing sequences with

desired properties
3. Joint method of 1 & 2

3 / 32

Outline

Intro

Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

Generative Modeling Architecthures

3 / 32

Outline

Intro

Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

Generative Modeling Architecthures

3 / 32

GAN Generator

I Generator G transforms continuous variable z into synthetic
data, G (z), where z is a high-level latent encoding for the
data

I Discriminator D produces a continuous valued number output
D(x) to score between real and generated output.

I Discriminator’s training objective:

maxθDLdisc = maxθD [Ex∼Preal
D(x)− Ez∼PzD(G (z))] (1)

I Generator’s training objective:

maxθGLgen = maxθG [Ez∼PzD(G (z))] (2)

4 / 32

GAN Generator for DNA

Wasserstein GAN (Arjovsky et al.): discriminator’s output is
adapted to an arbitrary score D(x) ∈ R, and an optimization
penalty is introduced to bound the discriminators gradients,
making the model more stable and easier to train

5 / 32

Outline

Intro

Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

Generative Modeling Architecthures

5 / 32

Generative Optimization

I Instead of generating realistic-looking data, the focus in this
alternative approach is to synthesize data which strongly
manifests certain desired properties

6 / 32

Activation Maximization for DNA

I Let P be a function which predicts a target property t = P(x)
(e.g, x is a dog)

I P can be generalized to some combination of explicit
functions {fi} and learned functions {fθj}:

P(x) =
∑
i

αi fi (x) +
∑
j

βj fθj (x) (3)

I Activation Maximization: starting with an arbitrary x ,
change x to maximize t by following the gradient w.r.t x:

x → x + ε∇x t (4)

I Final sequence can be found by taking a softmax over the 4
characters at each position, and taking an argmax.

7 / 32

Outline

Intro

Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

Generative Modeling Architecthures

7 / 32

Joint method

I One drawback with activation maximization is that it ignores
realism of data in its pursuit of optimal attributes

I E.g., such images are often exaggerated or nightmarish, with
the target property manifesting in unrealistic ways

8 / 32

Joint method: Plug & Play Generative Network

I “plug & play generative networks” (Nguyen et. al.):
combine activation maximization with a generative model

I Idea: Let a generator capture the generic high-level structure
of data, while using predictors to fine-tune specific properties

9 / 32

Joint method: Plug & Play Generative Network

This joint architecture requires two components:

I Generator G transforms latent codes z into synthetic data x
(e.g. a trained GAN generator), and a predictor P, mapping
data x to the corresponding attributes t = P(x).

I The two modules are plugged back-to-back, so that they form
a concatenated transformation z → x → t

10 / 32

Joint method: Plug & Play Generative Network

I Goal is still the same as activation maximization: tune data to
have desired properties

I To do this, we calculate the gradient of the prediction t with
respect to the generators latent codes z :

∇z t =
∑
i

∂t

∂xi

∂xi
∂z

=
∑
i

∂P(x)

∂xi

∂Gi (z)

∂z
(5)

11 / 32

Outline

Intro

Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

Generative Modeling Architecthures

11 / 32

Outline

Intro

Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

Generative Modeling Architecthures

11 / 32

Experiment 1: Generative DNA Model

I Perform several experiments intended to more fully
understand the capabilities of the DNA generator architecture

12 / 32

Exploring the Latent Encoding

I Trained a WGAN model on a dataset of 4.6M
50-nucleotide-long sequences encompassing chr 1 of hg38

I Consider interpolation between points in the latent space.
Show how the generated data varies as we traverse a straight
line between two arbitrary latent coordinates z1 and z2.

13 / 32

1.1: Exploring the Latent Encoding

I Reflection in the latent space: z → −z
I Fix a sequence x∗ (e.g. all “G”) and find, via gradient-based

search, 64 different latent points zi which each generate x∗ ,
i.e., G (zi) = x∗ for all zi

I Reflect each of these latent points and decode the
corresponding generated sequences

14 / 32

1.1 Verification of GAN: Distance to training sequences

15 / 32

1.2: Capturing Exon Splice Site Signals

I Trained GAN on 116k 500-nt-long human genomic sequences,
each containing exactly one exon (varying between 50-400 nt).

I Included an additional flag such that nucleotides within an
exon = 1, and non-exon positions = 0

I Model must simultaneously learn to separate exons while also
capturing the statistical information of nucleotides relative to
these exon borders (splice sites)

16 / 32

1.2: Capturing Exon Splice Site Signals

I Used the generated flag positions to align the corresponding
generated sequences (taking the first/last value above 0.5 as
the start/end of the exon)

I Model has picked up on various splice site signals

17 / 32

Outline

Intro

Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

Generative Modeling Architecthures

17 / 32

Experiment 2: Designing DNA

I Run several experiments for designing DNA sequences

I The running theme will be DNA/protein binding

18 / 32

2.1: Explicit Predictor (PWM): Motif Matching
I Goal: design DNA sequences using an explicit biologically

motivated predictor function
I Predictor Function:

1. 1-D convolution scans across the data, computing the inner
product of a fixed PWM with every length-K subsequence

2. Select the convolutional output with the highest value to get
the final score for the sequence

I Used the joint method, employing a generator trained on
sequences from human chr 1

19 / 32

2.2: Learned Predictor (DeepBind): Protein Binding

I Goal: Explore the use of a predictor model which has been
learned from data → Design new sequences which have high
binding scores

I Oracle model To simulate the process of evaluating
candidate sequences, use a proxy model which is trained on
Chip-Seq data. This model can be queried with new designed
sequences to gauge their expected binding score

20 / 32

2.2: Learned Predictor: Protein Binding
GAN for generating new sequences

I Using only samples with oracle scores less than 40% binding
likelihood, train a gan to generate new sequences, and then
test the generated sequences on the oracle.

21 / 32

2.2: Learned Predictor: Protein Binding
Optimizing Multiple Properties

1. Design DNA sequences which preferentially bind to one
protein in a family but not the other

2. Similarly, design sequences where two predictors model
binding of the same protein, but under two different molecular
concentrations

22 / 32

Future Directions

I Train an encoder E which maps data back to latent codes:
E(x) = z, making it easier to find latent encodings for specific
sequences

I Build a conditional GAN model and combine it with the joint
architecture - allowing some properties to remain fixed while
others were tuned

I Domain adaptation. E.g. provide a map of where we want
certain components (introns, exons, promoters, enhancers) to
be, and a generative model would dream up plausible
sequences with the desired properties

23 / 32

Outline

Intro

Generative Design of DNA
GAN
Generative Optimization
Joint Method of GAN and Activation Maximization

Experiments
1. Generative DNA Model

1.1: Exploring the Latent Encoding
1.2: Capturing Exon Splice Site Signals

2. Designing DNA

Generative Modeling Architecthures

23 / 32

RNNs

Training: maximize the likelihood of predicting the next char
Generating: Sample the model’s prediction at each time t and
feed back as the input to the next step t + 1 (arbitrarily long seqs)

I Can be trained to generate sequences in conditional manner,
producing outputs which have some desired property. Do this
by appending extra labelled data y (e.g. sentiment) to the
inputs xt .

24 / 32

RNNs

Suitability for DNA

I No successful variant of activation maximization or plug &
play that operates on RNNs.

I Also, without a learned latent encoding, we are limited to
tune a conditional RNN for which we explicitly train the
model for (e.g. no flipping the sequence).

25 / 32

Deep Autoregressive Models

Training

I Instead of feeding inputs only one at a time and relying on the
network to memorize past inputs, we can alternatively show it
the entire past history up to that point

Generating

I Similar to RNNs, feed the history of previous predictions as
input for each time step.

I Can also be built as conditional models, enabling the
generation of sequences with tailored properties.

26 / 32

Deep Autoregressive Models

Suitability for DNA: Similar to RNNs, they require supervised
training with a labelled dataset and that these properties must be
chosen beforehand and built in during training.

27 / 32

Variational Autoencoders

I In contrast to the 2 previous models, VAEs have the ability to
learn a controllable latent representation of data in an
unsupervised manner

I By changing the latent variable z, we can modify the synthetic
data that the model generates.

28 / 32

Variational Autoencoders

I Encoder E : transforms data to latent variables, x → z

I Decoder (or generator) G : transforms latent variables to
generated data, z → x ′

I VAEs use probability distributions rather than deterministic
functions to model these transformations

I To encode, we sample z from a distribution q(z |x)
I To decode, we do likewise for x from a distribution p(x |z).
I q and p are modelled via DNNs.

29 / 32

Variational Autoencoders

Training:

I Goal: make the error from x → z → x ′ as small as possible

I For VAEs, this reconstruction error is given by

Lrecon := Ez∼q(z|x)[−logp(x |z)] (6)

I In order to reconstruct successfully, the model must learn how
to capture the essential properties of the data within the
latent variable z

I Regularization encourages the latent codes to vary smoothly.
This is captured by a KL divergence term between q(z |x) and
a fixed prior on the latent space p(z) (e.g. normal)

I The full VAE objective which is minimized during training is

Lrecon + DKL(q(z |x)||p(z)) (7)

30 / 32

Variational Autoencoders

Suitability for DNA:

I It has been observed that if we use a strong decoder network,
such as an RNN, VAEs will exhibit a preference to push the
KL divergence term to zero

I This causes the latent code to be ignored and the generative
process is handled completely by the decoder

I Without learning a meaningful latent code, such models are
no better than a standard RNN

31 / 32

All Methods

32 / 32

	Intro
	Generative Design of DNA
	GAN
	Generative Optimization
	Joint Method of GAN and Activation Maximization

	Experiments
	1. Generative DNA Model
	2. Designing DNA

	Generative Modeling Architecthures

