Meta-Learning with Memory-Augmented Neural Networks
Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, Timothy Lillicrap
ICML 2016

Reviewed by: Jack Lanchantin

1Department of Computer Science, University of Virginia
https://qdata.github.io/deep2Read/
Meta-learning

- Scenario in which an agent learns at two levels
 - Rapid learning occurs within a task, for example, when learning to accurately classify within a particular dataset.
 - This learning is guided by knowledge accrued more gradually across tasks, which captures the way in which task structure varies across target domains.
- Given its two-tiered organization, meta-learning is often described as “learning to learn.”
META-LEARNING TASK METHODOLOGY

- Usually we try to choose parameters θ to minimize loss \mathcal{L} across dataset D.

- In meta-learning, we choose parameters to reduce the expected loss across a distribution of datasets $p(D)$:

$$
\theta^* = \arg\min_{\theta} \mathbb{E}_{D \sim p(D)}[\mathcal{L}(D; \theta)]
$$
Setup for This Paper

- Dataset $D = \{d_t\}_{t=1}^T = \{(x_t, y_t)\}_{t=1}^T$
- At each timestep t, the network receives input x_t as well as the label of the previous example, y_{t-1}:
 - $(x_1, \text{null}), (x_2, y_1), \ldots, (x_T, y_{T-1})$
- Labels, classes, and samples are shuffled in each training “episode”.

![Diagram showing class prediction, shuffle, and episode structure](image)
Memory-Augmented Neural Nets (MANNs)

- Learns to hold samples in memory until the correct labels are shown, after which they can be bound and stored for later use.
MANN Reading

Given input x_t, controller (LSTM) produces key k_t.

M_t is addressed using cosine similarity:

$$K(k_t, M_t(i)) = \frac{k_t \cdot M_t(i)}{||k_t|| \cdot ||c_t(i)||},$$

which is used to produce read-weight vector w^r_t:

$$w^r_t(i) \leftarrow \frac{\exp(K(k_t, M_t(i)))}{\sum_j K(k_t, M_t(j))}.$$

A certain memory r_t is read using this read-weight vector:

$$r_t \leftarrow \sum_i w^r_t(i) M_t(i).$$
LRUA: Content-based writer that writes memories to either the least used or most recently used memory location.

Usage weights:

\[w^u_t \leftarrow \gamma w^u_{t-1} + w^r_t + w^w_t \]

Least used weight:

\[w^{lu}_t(i) = \begin{cases}
0, & \text{if } w^u_t(i) > m(w^u_t, n) \\
1, & \text{if } w^u_t(i) \leq m(w^u_t, n)
\end{cases} \]

\(m(v, n) = n^{th} \text{ smallest element of vector } v \)
Write weight w_t^w:

$$w_t^w \leftarrow \sigma(\alpha) w_{t-1}^r + (1 - \sigma(\alpha)) w_{t-1}^{lu}$$

Writing to M

$$M_t(i) \leftarrow M_{t-1}(i) + w_t^w(i) k_t, \forall i$$
Omniglot Experiment Results

LSTM

MANN

Graphs showing the percent correct over episodes for 1st, 2nd, 5th, and 10th instance for both LSTM and MANN models.
Omniglot Experiment Results

Table 1. Test-set classification accuracies for humans compared to machine algorithms trained on the Omniglot dataset, using one-hot encodings of labels and five classes presented per episode.

<table>
<thead>
<tr>
<th>Model</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>10th</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMAN</td>
<td>34.5</td>
<td>57.3</td>
<td>70.1</td>
<td>71.8</td>
<td>81.4</td>
<td>92.4</td>
</tr>
<tr>
<td>FEEDFORWARD</td>
<td>24.4</td>
<td>19.6</td>
<td>21.1</td>
<td>19.9</td>
<td>22.8</td>
<td>19.5</td>
</tr>
<tr>
<td>LSTM</td>
<td>24.4</td>
<td>49.5</td>
<td>55.3</td>
<td>61.0</td>
<td>63.6</td>
<td>62.5</td>
</tr>
<tr>
<td>MANN</td>
<td>36.4</td>
<td>82.8</td>
<td>91.0</td>
<td>92.6</td>
<td>94.9</td>
<td>98.1</td>
</tr>
</tbody>
</table>