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Generalized Denoising Auto-Encoders as Generative Models
(Bengio et. al. - NIPS 2013)

Question: Do denoising auto-encoders completely characterize the input
distribution or only some aspect of it?

e Clustering algorithms only capture the modes of the distribution, while manifold learning
algorithms characterize the low-dimensional regions where the density concentrates

Propose: Different probabilistic interpretation of DAEs, which is valid for any data
type
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Generalized Denoising Auto-Encoders as Generative Models
(Bengio et. al. - NIPS 2013)

Overview:

The basic idea is that if we corrupt observed random variable X into X using conditional distribution
C(X|X), we are really training the DAE to estimate the reverse conditional P(X|X). Combining
this estimator with the known C (X' |X'), we show that we can recover a consistent estimator of
P(X) through a Markov chain that alternates between sampling from P(X|X) and sampling from
C(X|X), i.e., encode/decode, sample from the reconstruction distribution model P(X|X), apply
the stochastic corruption procedure C(X|X), and iterate.
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Generalized Denoising Auto-Encoders as Generative Models
(Bengio et. al. - NIPS 2013)

Training:

Algorithm 1 THE GENERALIZED DENOISING AUTO-ENCODER TRAINING ALGORITHM requires
a training set or training distribution D of examples X, a given corruption process C(X|X) from

which one can sample, and with which one trains a conditional distribution Py(X|X) from which
one can sample.

repeat
e sample training example X ~ D
e sample corrupted input X ~ C(X|X)
e use (X, X ) as an additional training example towards minimizing the expected value of
—1log Py(X|X), e.g., by a gradient step with respect to 6.

until convergence of training (e.g., as measured by early stopping on out-of-sample negative log-
likelihood)
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Generalized Denoising Auto-Encoders as Generative Models
(Bengio et. al. - NIPS 2013)

Sampling:

We define the following pseudo-Gibbs Markov chain associated with Pp:
Xt i Pg(X‘Xt_l)

X; ~ C(X|Xy) 3)

which can be initialized from an arbitrary choice Xy. This is the process by which we are go-
ing to generate samples X; according to the model implicitly learned by choosing 6. We define
T'(X¢|X:—1) the transition operator that defines a conditional distribution for X; given X;_1, inde-
pendently of ¢, so that the sequence of X;’s forms a homogeneous Markov chain. If the asymptotic
marginal distribution of the X;’s exists, we call this distribution 7(X ), and we show below that it
consistently estimates P (X).
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Generalized Denoising Auto-Encoders as Generative Models
(Bengio et. al. - NIPS 2013)
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Figure 4: Successive samples generated by Markov chain associated with the trained DAEs ac-
cording to the plain sampling scheme (left) and walkback sampling scheme (right). There are less
“spurious” samples with the walkback algorithm.
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Generalized Denoising Auto-Encoders as Generative Models
(Bengio et. al. - NIPS 2013)

Conclusion:

Training a model to denoise is a way to implicitly estimate the underlying data
generating process, and that a simple Markov chain that alternates sampling from
the denoising model and from the corruption process converges to that estimator.
This provides a means for generating data from any DAE
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The Neural Autoregressive Distribution Estimator
( Larochelle and Murray - AISTATS 2011)
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The Neural Autoregressive Distribution Estimator
( Larochelle and Murray - AISTATS 2011)

RBMs model the distribution of observations using binary hidden variables

E(v,h)=-h"Wv—-b'v—-c'h (1)

probabilities are assigned to any observation v as fol-

lows:
p(v) =) exp(~E(v,h))/Z, (2)
h

RBM Inference: If the observations can be decomposed into an input x and a target vy,
then an RBM trained on such pairs can also be used to predict a new x
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The Neural Autoregressive Distribution Estimator
( Larochelle and Murray - AISTATS 2011)

Problem: RBM isn’t suited for estimating the joint probability of a given observation
(due to partition function being intractable)

Solution: Convert RBM into Bayesian Network

D

p(V) = Hp(vi|vparents(i)) )

1=1

where all observation variables v; are arranged into a
directed acyclic graph and vp,rents(s) corresponds to

all the variables in v that are parents of v; into that
graph.
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The Neural Autoregressive Distribution Estimator
( Larochelle and Murray - AISTATS 2011)
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The Neural Autoregressive Distribution Estimator
( Larochelle and Murray - AISTATS 2011)

p(’Uz' = 1|V<z') = sigm (bz + (WT)z,hz)
h; =sigm (c + W. .;v;),

Training is done by minimizing the average negative
log-likelihood of the parameters given the training set:

T D
2 Z—logp Vi) 1 EZ log p(vi|v<i), (11)

t=1 i=1
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The Neural Autoregressive Distribution Estimator
( Larochelle and Murray - AISTATS 2011)

Conclusion:

NADE can be seen as a method for converting an RBM into a tractable distribution
estimator

It can also be understood as a special kind of autoencoder whose output assigns
valid probabilities to observations and hence is a proper generative model
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Generative Adversarial Networks
(Goodfellow et. al. - NIPS 2014)
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Generative Adversarial Networks
(Goodfellow et. al. - NIPS 2014)

Overview:
Framework for estimating generative models via an adversarial process

Simultaneously train two models:
(1) generative model G that captures the data distribution,
(2) discriminative model D that estimates the probability that a sample
came from the training data rather than G
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Generative Adversarial Networks
(Goodfellow et. al. - NIPS 2014)

Method:

The adversarial modeling framework is most straightforward to apply when the models are both
multilayer perceptrons. To learn the generator’s distribution p, over data x, we define a prior on
input noise variables p.(z), then represent a mapping to data space as G(z;6,), where G is a
differentiable function represented by a multilayer perceptron with parameters 6,. We also define a
second multilayer perceptron D(x;6;) that outputs a single scalar. D(x) represents the probability
that  came from the data rather than p,. We train D to maximize the probability of assigning the
correct label to both training examples and samples from G. We simultaneously train G to minimize

log(1 — D(G(2))):
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Generative Adversarial Networks
(Goodfellow et. al. - NIPS 2014)
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Unlike most other visualizations of deep generative models, these images show
actual samples from the model distributions, not conditional means given
samples of hidden units. Moreover, these samples are uncorrelated because
the sampling process does not depend on Markov chain mixing
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