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Introduction

Basic Premise and Motivation

» Research has suggested that DNNs can memorize entire
datasets such as ImageNet

» Despite this, DNNs still generalize well; why do some
networks generalize better than others?

» Other work: flatness of minima and PAC-bayes bounds,
information content stored in network weights, SGD
encourages generalization,...

» Focus on ablation analyses to measure reliance of network on
single directions

» Define single direction in activation space as activation of
single unit or feature map or some linear comb. of units in
response to some input



Approach

Models and Datasets

» Three models: 2-hidden layer MLP trained on MNIST,
11-layer CNN trained on CIFAR-10, 50-layer residual network
trained on ImageNet

» RelLU non-linearities applied to all layers but output

» Batch normalization was used for all networks

» Partially Corrupted Labels: used datasets with differing
fractions of randomized labels to control degree of
memorization: distribution of labels maintained, but any
patterns were broken



Approach

Perturbation Analyses: Ablations

» Measured importance of single direction to a network by
seeing how performance degrades once direction influence was
removed

» To remove coordinate-aligned single direction, clamped
activity in the direction to fixed value

» Ablations were performed on single units in MLPs or entire
feature maps in CNNs and performed in activation space, not
weight space

> See how network performance degrades as increasing subsets
of single directions are ablated

> Decided to clamp to 0



Approach

Perturbation Analyses: Noise

» To test network dependence on random single directions (as
opposed to coordinate-aligned), add Gaussian noise to all
units with zero mean and progressively increasing variance

» Normalize variance by empirical variance of unit's activations
across training set



Approach

Quantifying Class Selectivity of Individual Units

> Used metric inspired by selectivity indices used in systems
neuroscience

Kmax — H—max

selectivity =
Pmax + H—max

where [imax is highest class-conditional mean activity and
I—max IS mean activity for all other classes

» Metric ranges from 0 (unit's average activity same for all
classes) to 1 (unit only active for inputs of single class)



Approach

Quantifying Class Selectivity of Individual Units

» Imperfect measure of selectivity: unit with little information
about every class would have low index, but would measure
discriminability of classes

» Replicate results using mutual information which highlights
units with information about multiple classes



Experiments

Intuition

» Consider two large networks: one which memorizes the
dataset, one which learns the structure and thus generalizes
well

» Memorizing network should have larger minimal description
length than generalizing network

» Therefore, memorizing network should use more capacity, and
by extension, more single directions



Experiments

Effect of Memorization on Single Direction Dependence

>

Train accuracy

Test whether memorization leads to greater dependence on
single directions: train variety of networks on datasets with
differing amounts of random labels and evaluate performance
as more single directions were ablated

More corrupted labels increased sensitivity to ablations
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Experiments

Effect of Memorization on Random Single Directions

» Repeated similar experiment with random noise perturbation;
similar findings
» Graphs show MLP on MNIST (a) and CNN on CIFAR-10 (b)
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Experiments

Networks Trained on Same Data

» Also want to see if conclusions apply to networks which are
not forced to memorize set (i.e. trained with uncorrupted
data)

» Trained 200 networks on CIFAR-10 with different
initializations and training data order

» Compared 5 networks with best generalization and 5 networks
with worst; similar findings as before

> Plot area under cumulative ablation curve for all 200 networks
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Experiments

Single Directions as Signal for Model Selection

» Can single direction reliance be used to estimate
generalization performance without need for held-out test set?

» Trained MLP on MNIST and measured area under cumulative
ablation curve (AUC) over course of training

» AUC starts to drop when test and train accuracies start to
diverge, AUC and test loss negatively correlated
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Experiments
Single Directions as Signal for Model Selection

» Can single direction reliance be used for hyperparameter

selection?
» Trained 192 CIFAR-10 models with different hyperparameters

» AUC and test accuracy highly correlated in hyperparameter
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Experiments

Relation to Dropout

» Similar to using dropout at training time; seems to discourage
reliance on single directions

» However, network is only robust to ablations up to dropout
fraction

» With enough capacity, a network can guard against dropout
by making multiple copies of a single direction; however,
network will only make minimum number of copies

» Network robust to dropout as long as all redundant single
directions were not removed at the same time



Experiments

Relation to Dropout

» Trained MLPs on MNIST with dropout probabilities of 0.1,
0.2, and 0.3 on both corrupted and unmodified labels

» Took longer to converge and converged to worse solutions;
implies that memorization is discouraged

» However, past dropout, networks much more sensitive to
ablations; suggests dropout is an effective regularizer, but only
until dropout fraction
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Experiments

Relation to Batch Normalization

» Batch normalization does appear to discourage reliance on
single directions

» Trained CNNs on CIFAR-10 with and without and measured
robustness to ablation
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Experiments

Class Selectivity and Importance

» Results suggest that networks less reliant on single directions
generalize better

» Counter-intuitive to past work in neuroscience and deep
learning which highlight important of single units/feature
maps which are selective for particular features of classes

> Test whether class-selectivity of single directions affects
importance of directions to a network’s output



Experiments

Class Selectivity and Importance

» Test if batch normalization influences distribution of
information about class across single directions

> Use selectivity index from before, trained 4 uncorrupted
models on CIFAR-10

» Batch normalization actually discourages presence of feature
maps with concentrated class information; raises question of
whether highly selective feature maps are beneficial
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Experiments

Class Selectivity and Importance

» Determine if selectivity of unit affects impact of ablating said
unit

» For MLPs trained on MNIST, very small correlation
(Spearman’s: 0.095)

» Many highly-selective units had minimal impact when ablated

» Similar results for CNNs on CIFAR-10

» Actually, CIFAR-10 had negative correlation; found to be
driven by early network layers

> In all 3 networks, earlier ablations more impactful
» Repeated with mutual information and got similar results

» Overall: selective and non-selective units are similarly
important



Experiments

Class Selectivity and Importance
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Experiments

Selectivity and L1-norm

» Compared class selectivity to L1-norm of filter weights, a
metric which is a good predictor of feature map importance

» Found to be largely unrelated (if not negatively related)

» Suggests class selectivity may in fact by detrimental to
network perform; more research needs to be done



Related Work

» Direct inspiration from Zhang et al. (2017); replicated results
using partially corrupted labels and answer the posed
question: is there an empirical difference between networks
which memorize and those which generalize?

» Linking generalization to sharpness of minima
» Contextualizing generalization in information theory
> Analysis on properties of models trained on corrupted labels

> Perturbation analyses: model pruning, finding maximally
important direction, highlighting single selective units,...

» Concept selectivity metric



Discussion and Future Work

Conclusion

» Taken an empirical approach to comparing memorizing and
generalizing networks

» Found the generalizing ability is related to reliance on single
directions in models trained on both corrupted and
uncorrupted data, and also over the course of training for a
single network

» Showed that batch normalization discourages dependence on
single directions

» Class selectivity largely uncorrelated to importance of unit to
output; batch normalization actually decreases selectivity,
which suggests that class selectivity may harm output



Discussion and Future Work
Future Work

» Construct regularizer which penalizes dependence on single
directions

» Could assess generalization performance without sacrificing
training data to be used as validation set

» Could use single direction reliance as a signal for
early-stopping or hyperparameter searching

> Find extent to which train and test set overlap affects single
direction dependence
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