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Introduction
Basic Premise and Motivation

I Over half of proposed defenses against adversarial examples
for ICLR 2018 have already been broken

I In recent years, people have proposed methods to formally
verify neural networks; take an network and formally prove
that it satisfies a certain property (or provide a
counterexample)

I Propose a method to formally verify effectiveness of
adversarial attacks and defenses; apply verification to
construct provably minimally-distorted examples



Introduction
Types of Evaluation

I Attack evaluation: Use provably minimally-distorted examples
and compare to an attack’s example to evaluate efficacy of an
attack

I Defense evaluation: Observe how applying a certain defense
affects how distorted minimally-distorted example is; proof vs
empirical observations



Background and Notation
Notation

I Neural networks: Multilayer network F = Fn ◦ Fn−1 ◦ ...F1 ◦ F0
where Fn, the final layer, is a softmax activation; output of
second to last layer is logits Z = Fn−1 ◦ ...F1 ◦ F0

I lF (x , y) is cross-entropy loss of F on input x with label y

I Focus on greyscale MNIST, which have inputs of form
[0, 1]W ∗H

I Adversarial examples: Given x classified as t, find x ′ which
produces target t ′ where x is close to x ′ using some distance
measurement: for consistency, use L1 and L∞



Background and Notation
Example Generation

I Fast Sign Method (FSM): one-step algorithm,
x ′ = FGM(x) = clip[0,1](x + εsign(∇lF (x , y)))

I Basic Iterative Method (BIM) or PGD: iterative application of
FGM, x ′i+1 = clip[x−α,x+α](FGM(x ′i ))

I Carlini and Wagner Method (CW): iterative attack which
constructs examples by approximately solving min d(x , x ′)
such that F (x ′) = t ′ where d is the distance metric; to make
easier, instead use min d(x , x ′) + cg(x ′) where g(x ′) encodes
how close to adversarial x ′ is

g(x ′) = max(max{Z (x ′)i : i 6= t} − Z (x ′)t , 0)



Background and Notation
Network Verification

I Focus on recently proposed Reluplex algorithm (Katz et al.,
2017b)

I Simplex-based approach that effectively tackles networks with
piecewise-linear activation functions (ReLUs) or max-pooling
layers

I Reluplex can be used to determine whether there exists an
adversarial example within δ of x ; done by encoding neural
network and constraints regarding δ as a set of linear
equations and ReLU constraints

I By using Reluplex iteratively like binary search, can
approximate optimal δ



Background and Notation
Current Focus

I Current work is focused on adversarial training and provable
(certified) defenses

I Downside to certified defenses is that it only works for small
networks with small datasets

I This work can take an arbitrary defense and prove properties
about it on a small dataset

I Also has limitation of not scaling to large datasets



Model Setup

I Neural network verification is NP-complete; only networks
with a few hundred nodes can be soundly verified

I Use fully-connected, 3-layer network with only 20k weights
and 100 hidden neurons for MNIST

I Use proof-of-concept implementation of Reluplex online; only
non-linear function it can support is ReLU function

I Modify to support max operators; allows for support of
max-pooling layers

max(x , y) = ReLU(x − y) + y

I Also, modify to support absolute values to compute distances
for L1 and L∞

|x | = max(x ,−x) = ReLU(2x)− x

I Increase in ReLU constraints slowed performance



Model Setup

I Each experiment included network F , distance metric
d ∈ {L1, L∞}, input x , target label l ′ 6= F (x), and initial adv.
input x ′init where F (x ′init) = l ′

I Use ReLU search to find bounds δmin and δmax on optimal δ;
initialize δmin = 0 and δmax = x ′init

I For x ′init , use example generated using CW method

I L1 initial distances typically much larger, which made Reluplex
slower



Evaluation

I Arbitrarily pick 10 source images with known labels from
MNIST test set

I Consider two networks: one as described previously, N,
another with adversarial training, Ñ

I Also consider both L1 and L∞
I For every combination of network, distance metric, and source

image x , consider each of other 9 labels for x ; use CW to
make targeted attack and produce initial example, then use
Reluplex to generate minimally-distorted example



Evaluation

I First sub-row: successfully terminated Reluplex, Second
sub-row: all experiments (incl. timeouts); distances are
averages

I Naturally, results only hold for the specific networks and
inputs, but can be used to provide intuition on performance



Evaluation
Evaluating Attacks

I Iterative attacks like CW produce near-optimal examples

I There is, however, still room to improve iterative attacks:
ground-truth adversarial examples frequently had 30-40% less
distortion than best iterative example; happens because PGD
finds local, not global minimum

I If iterative attack performs poorly on one target label, it will
tend to perform poorly on others too; frequently, gradient
descent leads away from target towards inferior local minimum



Evaluation
Evaluating Defenses

I To evaluate Madry et al., only consider L∞ cases because too
few L1 Reluplex searches terminated; only consider subset of
35 cases which converged for both N and Ñ



Evaluation
Evaluating Defenses

I Adversarial training from Madry et al. is effective; increases
minimally-distorted distance from average of 0.039 to 0.165
(423% increase)

I 7 out of 35 experiments, however, actually had smaller
minimal distances after adversarial training compared to
original network (average 12.8% decrease)

I Highlights necessity to evaluate defenses against large sets of
data



Evaluation
Evaluating Defenses

I Training on iterative attacks does not overfit

I Easier to formally analyze Madry et al.: Reluplex terminated
on significantly more experiments after adversarial training

I Unsure as to why; not because adversarially trained network
makes used of less ReLU units since there is no statistical
difference in use of ReLU units



Conclusion

I Neural networks have great potential for safety-critical
systems, but susceptibility to adversrarial examples is a great
hindrance

I Introduce provably minimally-distorted examples and show
how to construct with formal verification approaches

I Showed that Carlini and Wagner produced examples very close
to minimally-distorted and that Madry et. al. provably
increased robustness of network; to their knowledge, first proof
of robustness for a defense not designed to be proven secure

I Current verification techniques are limited to small networks;
limitation expected to be lifted in the future

I Also, networks can be designed to be more amenable to
verification
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