Provably Minimally-Distorted Adversarial Examples

N. Carlini¹, G. Katz², C. Barrett³, D. Dill⁴

¹University of California, Berkeley ²Stanford University

arXiv: 1709.10207 Reviewed by : Bill Zhang University of Virginia https://qdata.github.io/deep2Read/

Outline

Introduction

Background and Notation

Model Setup

Evaluation

Conclusion

References

◆□ > < 個 > < Ξ > < Ξ > Ξ · の Q @

Introduction

Basic Premise and Motivation

- Over half of proposed defenses against adversarial examples for ICLR 2018 have already been broken
- In recent years, people have proposed methods to formally verify neural networks; take an network and formally prove that it satisfies a certain property (or provide a counterexample)

 Propose a method to formally verify effectiveness of adversarial attacks and defenses; apply verification to construct provably minimally-distorted examples

Introduction Types of Evaluation

- Attack evaluation: Use provably minimally-distorted examples and compare to an attack's example to evaluate efficacy of an attack
- Defense evaluation: Observe how applying a certain defense affects how distorted minimally-distorted example is; proof vs empirical observations

Notation

- ▶ Neural networks: Multilayer network F = F_n ∘ F_{n-1} ∘ ...F₁ ∘ F₀ where F_n, the final layer, is a softmax activation; output of second to last layer is logits Z = F_{n-1} ∘ ...F₁ ∘ F₀
- ▶ $I_F(x, y)$ is cross-entropy loss of F on input x with label y
- ► Focus on greyscale MNIST, which have inputs of form [0, 1]^W*^H
- ► Adversarial examples: Given x classified as t, find x' which produces target t' where x is close to x' using some distance measurement: for consistency, use L₁ and L_∞

Example Generation

- Fast Sign Method (FSM): one-step algorithm, x' = FGM(x) = clip_[0,1](x + esign(∇l_F(x, y)))
- Basic Iterative Method (BIM) or PGD: iterative application of FGM, x'_{i+1} = clip_[x-α,x+α](FGM(x'_i))
- ► Carlini and Wagner Method (CW): iterative attack which constructs examples by approximately solving min d(x, x') such that F(x') = t' where d is the distance metric; to make easier, instead use min d(x, x') + cg(x') where g(x') encodes how close to adversarial x' is

$$g(x') = max(max\{Z(x')_i : i \neq t\} - Z(x')_t, 0)$$

Network Verification

- Focus on recently proposed Reluplex algorithm (Katz et al., 2017b)
- Simplex-based approach that effectively tackles networks with piecewise-linear activation functions (ReLUs) or max-pooling layers
- Reluplex can be used to determine whether there exists an adversarial example within δ of x; done by encoding neural network and constraints regarding δ as a set of linear equations and ReLU constraints

 \blacktriangleright By using Reluplex iteratively like binary search, can approximate optimal δ

Current Focus

- Current work is focused on adversarial training and provable (certified) defenses
- Downside to certified defenses is that it only works for small networks with small datasets
- This work can take an arbitrary defense and prove properties about it on a small dataset

Also has limitation of not scaling to large datasets

Model Setup

- Neural network verification is NP-complete; only networks with a few hundred nodes can be soundly verified
- Use fully-connected, 3-layer network with only 20k weights and 100 hidden neurons for MNIST
- Use proof-of-concept implementation of Reluplex online; only non-linear function it can support is ReLU function
- Modify to support max operators; allows for support of max-pooling layers

$$max(x,y) = ReLU(x-y) + y$$

 \blacktriangleright Also, modify to support absolute values to compute distances for L_1 and L_∞

$$|x| = max(x, -x) = ReLU(2x) - x$$

► Increase in ReLU constraints slowed performance

Model Setup

- ▶ Each experiment included network *F*, distance metric $d \in \{L_1, L_\infty\}$, input *x*, target label $l' \neq F(x)$, and initial adv. input x'_{init} where $F(x'_{init}) = l'$
- ► Use ReLU search to find bounds δ_{min} and δ_{max} on optimal δ; initialize δ_{min} = 0 and δ_{max} = x'_{init}
- For x'_{init} , use example generated using CW method
- L₁ initial distances typically much larger, which made Reluplex slower

(日) (同) (三) (三) (三) (○) (○)

- Arbitrarily pick 10 source images with known labels from MNIST test set
- ► Consider two networks: one as described previously, N, another with adversarial training, \tilde{N}
- Also consider both L_1 and L_∞
- For every combination of network, distance metric, and source image x, consider each of other 9 labels for x; use CW to make targeted attack and produce initial example, then use Reluplex to generate minimally-distorted example

- First sub-row: successfully terminated Reluplex, Second sub-row: all experiments (incl. timeouts); distances are averages
- Naturally, results only hold for the specific networks and inputs, but can be used to provide intuition on performance

	Number	Carlini-	Minimally Distorted	Percent
	of Points	Wagner	Adversarial Example	Improvement
N, L_{∞}	38/90	0.042	0.038	11.632
	90/90	0.063	0.061	6.027
N, L_1	6/90	1.94	1.731	34.909
	90/90	7.551	7.492	3.297
\bar{N}, L_{∞}	81/90	0.211	0.193	11.637
	90/90	0.219	0.203	10.568
\bar{N}, L_1	64/90	6.44	6.36	6.285
	90/90	8.187	8.128	4.486

Table 1. Evaluating our technique on the MNIST dataset

Evaluating Attacks

- Iterative attacks like CW produce near-optimal examples
- There is, however, still room to improve iterative attacks: ground-truth adversarial examples frequently had 30-40% less distortion than best iterative example; happens because PGD finds local, not global minimum
- If iterative attack performs poorly on one target label, it will tend to perform poorly on others too; frequently, gradient descent leads away from target towards inferior local minimum

Evaluating Defenses

• To evaluate Madry et al., only consider L_{∞} cases because too few L_1 Reluplex searches terminated; only consider subset of 35 cases which converged for both N and \tilde{N}

Table 2. Comparing the 35 instances on which Reluplex terminated for both N, L_{∞} and \bar{N}, L_{∞} .

	Number of Points	CW	Minimally Distorted	Percent Improvement
N , L_{∞}	35/35	0.042	0.039	12.319
\bar{N}, L_{∞}	35/35	0.18	0.165	11.153

Evaluation Evaluating Defenses

- Adversarial training from Madry et al. is effective; increases minimally-distorted distance from average of 0.039 to 0.165 (423% increase)
- 7 out of 35 experiments, however, actually had smaller minimal distances after adversarial training compared to original network (average 12.8% decrease)
- Highlights necessity to evaluate defenses against large sets of data

Evaluation Evaluating Defenses

- Training on iterative attacks does not overfit
- Easier to formally analyze Madry et al.: Reluplex terminated on significantly more experiments after adversarial training
- Unsure as to why; not because adversarially trained network makes used of less ReLU units since there is no statistical difference in use of ReLU units

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

- Neural networks have great potential for safety-critical systems, but susceptibility to adversrarial examples is a great hindrance
- Introduce provably minimally-distorted examples and show how to construct with formal verification approaches
- Showed that Carlini and Wagner produced examples very close to minimally-distorted and that Madry et. al. provably increased robustness of network; to their knowledge, first proof of robustness for a defense not designed to be proven secure
- Current verification techniques are limited to small networks; limitation expected to be lifted in the future
- Also, networks can be designed to be more amenable to verification

References

https://arxiv.org/pdf/1709.10207.pdf

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ