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Introduction

Basic Premise and Motivation

» Study properties of adversarial examples

» Calculate adversarial error, the difference between clean and
adversarial accuracy with perturbation €

» At small €, adversarial error has similar dependence on € across
all models and datasets; grows like Ae?

» Show that origin of adversarial examples is inherent
uncertainty that neural networks have; dependent only on
logit differences

> Using these results, propose new methods of combating
adversarial examples



Universality Observations

» FGSM adversarial example calculation where x2@ is

adversarial image, x is clean image, y is the correct label for
X, € is perturbation size, and L is the loss function

sadv + € sign(VXL(X7Y))

» Plot adversarial error as function of € on ImageNet for various

models
» For € < 0.2, obeys power law with exponent between 0.9 and
1.1
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Universality Observations

» Try to get different form for adversarial error using different
step l.I. attack, where y;; is least likely predicted class

XadV = X — € Sign(vXL(XayLL))

» Still obeys power law except with exponent between 1.8 and
2.2 for ImageNet and 1.8 and 2.5 for MNIST and CIFARL0;
image is for ImageNet

-‘ Tireeed

logpadv. error

~1
logpe



Universality Observations

» Test more extensively by investigating effect of architecture by
stochastically sampling thousands of neural networks and
training on MNIST

» Either fully-connected with 1-4 hidden layers and 30-2000
nodes/layer or simple CNN with dropout between 0-0.5

» Power law with exponent between 0.9 and 1.1
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Universality Observations

> Probe relationship between generalization and adversarial
robustness by training fully connected network on MNIST
until perfect test set accuracy and conducting FGSM attack
» Power law with exponent 1.2
Investigate dependence of error on attack protocol using

MNIST
» Exponent values are L2-norm: 1.1, FGSM: 1.2, PGD: 1.3,
step-l.1.: 2.3
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Mean-Field Theory

Linear Response

>

Focus on L2-variant of FGSM; form and exponent of power
law insensitive to this choice as shown previously
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X" = x4+ ¢

Find minimum € such that class assigned to input x changes,
é(x)

Assuming the network perfectly classifies clean images,
adversarial error rate is equal to P(€ < ¢€)

Notation: y;(x) is output, hj(x) is corresponding logits, choose
ordering of logits such that h;(x) > ha(x) > ... > hy(x)

Logit differences: Ajj(x) = hi(x) — hj(x)

For a network to make an erroneous prediction,

h1(x39) < hj(x?9) for some j



Mean-Field Theory

Linear Response

» Through derivations (see paper appendix), arrive at equation
where Jjj = % is the input-logit Jacobian and §; = % is the
error of network outputs; valid at small ¢

JTJs
€ + O(é?
551, O

h(x*®) = h(x) +

» Define I'(x) = HJJT5J||52. Then, Aj;i(x%) = hi(x3) — hj(x*¥) ~
(hi(x) = hj(x)) + €(Ti(x) = Tj(x)) = Aji(x) + e(Ti(x) = T(x))

» Misclassification occurs when Ay;(x?9) = 0 for some j.
Therefore, for any given j,

Agj(x)
Mj(x) = T1(x)

which allows us to approximate €jinear(x) = min;(€j(x))

&(x) =



Mean-Field Theory

Linear Response

» Graph logit values as function of ¢ and observe crossover
point; good approximation

» Graph € against ¢; linear good fit for small €
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Mean-Field Theory

Linear Response

» However, I';(x) difficult to calculate because of Jacobian;
introduce a mean-field approximation where we replace this
with the average over entire dataset, (I';(x)) (see paper 2 in
references)

» Also, observe that vast majority of time second logit overtakes
first logit most quickly, therefore assume Ajp(x) results in
minimum €

EM.F. = _Anld)
T (T2) — ()
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Mean-Field Theory

Logit Differences

» Through derivations (see paper appendix), arrive at an
approximation for P(Ay;) at small Ay

P(Ay)j) = CA 2+ O(A]; )

where C is a network specific constant

> The earlier mean-field approximation for € implies that
P(é\ S 6) =~ P(Alg S 6(<r2> — <F1>)) = P(A12 S g)

where € = ¢((l2) — (1))
» Combining the two results,

P(¢ < €) =~ P(A1x < &) = Cé+ O(&?)



Mean-Field Theory

Logit Differences

> In order to further test the mean-field approximation, A;; was
evaluated for various neural network architectures and
datasets
» Aj, does seem to have exponent of O, for higher j, also power
law, but typically not integral
» Compared to randomly sampled i.i.d. logits
» Shows that adversarial error has power law form for various
datasets and models; implies that commonality of adversarial
examples is not due to depth of model or high dimensionality
of data, but rather because difference between logit 1 and 2 is
frequently small



Mean-Field Theory

Logit Differences

» Graphs of logit differences for models trained on ImageNet
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Mean-Field Theory

Logit Differences

» Given the large density of small A1 values, propose new loss
function to increase confidence of network at each sample to

increase logit differences
loss = old loss — X7, p; log p;

» Logit difference distribution was verified to have overall larger
values
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Figure 5: Step LI attack adversarial accuracy as a function of ¢ for CNN (a) and permutation
invariant (b) MNIST, with regular training (purple), with entropy regularization (red), adversarial
training (green), and adversarial training with entropy regularization (blue). Adversarial training
was done using the step LI. method. In (¢), we show the PGD attack adversarial accuracy on
permutation invariant MNIST trained with and without step 1.1. adversarial training.



Network Architectures

> Recent papers suggest that larger networks are more resistant
against adversarial examples regardless of adversarial training

» To test effects of architecture, conduct experiments
» Neural architecture search (NAS) where child models are
trained with clean and either step I.I. or PGD adversarial
examples and reward is computed on validation set with FGSM
adversarial accuracy

» Step I.I training
» Child models trained for 10 epochs on training batches where
half the samples are adversarially perturbed
» Pick model with highest adversarial accuracy and enlarge by
scaling up number of filters; train for 100 epochs on full
training set for 12 different hyperparameter sets
» Pick hyperparameter set with highest adversarial accuracy



Network Architectures

» PGD Training
» Follow procedures in Madry et al. (2017)

» Compared two experiments with baseline NAS which rewarded
clean accuracy; NAS baseline had 4.9 million trainable
parameters vs. 2.3 million (Exp. 1) and 3.5 million (Exp. 2)

» Graphs: left is step .| adversarial accuracy, right is PGD
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Network Architectures

» Next, examine performance statistics of 9,360 child models in
Experiment 1 (only 10 epochs of training)

> Very little correlation between number of trainable parameters
and adversarial accuracy

» High correlation between clean accuracy and adversarial
accuracy

» Explains why larger models are more robust against adversarial
examples

» High clean accuracy insufficient; high variance of adversarial

accuracy among high clean accuracy models
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Summary

» The functional form of adversarial error and logit differences
are universal at small €

» Entropy regularization and better network architectures can
help protect against adversarial examples

» Model architecture affects adversarial accuracy due to its
effects on clean accuracy
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