
Intriguing Properties of Adversarial Examples

E.D. Cubuk, B. Zoph, S.S. Schoenholz, Q.V. Le

Google

arXiv:1711.02846

Reviewed by : Bill Zhang
University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/


Outline

Introduction

Universality Observations

Mean-Field Theory

Network Architectures

Summary



Introduction
Basic Premise and Motivation

I Study properties of adversarial examples
I Calculate adversarial error, the difference between clean and

adversarial accuracy with perturbation ε
I At small ε, adversarial error has similar dependence on ε across

all models and datasets; grows like AεB

I Show that origin of adversarial examples is inherent
uncertainty that neural networks have; dependent only on
logit differences

I Using these results, propose new methods of combating
adversarial examples



Universality Observations
I FGSM adversarial example calculation where xadv is

adversarial image, x is clean image, y is the correct label for
x , ε is perturbation size, and L is the loss function

xadv = x + ε sign(∇xL(x , y))

I Plot adversarial error as function of ε on ImageNet for various
models

I For ε < 0.2, obeys power law with exponent between 0.9 and
1.1



Universality Observations

I Try to get different form for adversarial error using different
step l.l. attack, where yLL is least likely predicted class

xadv = x − ε sign(∇xL(x , yLL))

I Still obeys power law except with exponent between 1.8 and
2.2 for ImageNet and 1.8 and 2.5 for MNIST and CIFAR10;
image is for ImageNet



Universality Observations
I Test more extensively by investigating effect of architecture by

stochastically sampling thousands of neural networks and
training on MNIST

I Either fully-connected with 1-4 hidden layers and 30-2000
nodes/layer or simple CNN with dropout between 0-0.5

I Power law with exponent between 0.9 and 1.1



Universality Observations

I Probe relationship between generalization and adversarial
robustness by training fully connected network on MNIST
until perfect test set accuracy and conducting FGSM attack

I Power law with exponent 1.2

Investigate dependence of error on attack protocol using
MNIST

I Exponent values are L2-norm: 1.1, FGSM: 1.2, PGD: 1.3,
step-l.l.: 2.3



Mean-Field Theory
Linear Response

I Focus on L2-variant of FGSM; form and exponent of power
law insensitive to this choice as shown previously

xadv = x + ε
∇xL

||∇xL||2

I Find minimum ε such that class assigned to input x changes,
ε̂(x)

I Assuming the network perfectly classifies clean images,
adversarial error rate is equal to P(ε̂ < ε)

I Notation: ŷi (x) is output, hi (x) is corresponding logits, choose
ordering of logits such that h1(x) ≥ h2(x) ≥ ... ≥ hN(x)

I Logit differences: ∆ij(x) = hi (x)− hj(x)

I For a network to make an erroneous prediction,
h1(xadv ) < hj(x

adv ) for some j



Mean-Field Theory
Linear Response

I Through derivations (see paper appendix), arrive at equation

where Jij =
∂hj
∂xi

is the input-logit Jacobian and δi = ∂L
∂hi

is the
error of network outputs; valid at small ε

h(xadv ) = h(x) + ε
JT Jδ

||Jδ||2
+ O(ε2)

I Define Γ(x) = JT Jδ
||Jδ||2 . Then, ∆ij(x

adv ) = hi (x
adv )−hj(x

adv ) ≈
(hi (x)− hj(x)) + ε(Γi (x)− Γj(x)) = ∆ij(x) + ε(Γi (x)− Γj(x))

I Misclassification occurs when ∆1j(x
adv ) = 0 for some j .

Therefore, for any given j ,

ε̂j(x) =
∆1j(x)

Γj(x)− Γ1(x)

which allows us to approximate ε̂linear (x) = minj(ε̂j(x))



Mean-Field Theory
Linear Response

I Graph logit values as function of ε and observe crossover
point; good approximation

I Graph ε̂ against ε; linear good fit for small ε



Mean-Field Theory
Linear Response

I However, Γi (x) difficult to calculate because of Jacobian;
introduce a mean-field approximation where we replace this
with the average over entire dataset, 〈Γi (x)〉 (see paper 2 in
references)

I Also, observe that vast majority of time second logit overtakes
first logit most quickly, therefore assume ∆12(x) results in
minimum ε̂

ε̂M.F . =
∆12(x)

〈Γ2〉 − 〈Γ1〉



Mean-Field Theory
Logit Differences

I Through derivations (see paper appendix), arrive at an
approximation for P(∆1j) at small ∆1j

P(∆1j) = C∆j−2
1j + O(∆j−1

1j )

where C is a network specific constant

I The earlier mean-field approximation for ε̂ implies that

P(ε̂ ≤ ε) ≈ P(∆12 ≤ ε(〈Γ2〉 − 〈Γ1〉)) = P(∆12 ≤ ε̃)

where ε̃ = ε(〈Γ2〉 − 〈Γ1〉)
I Combining the two results,

P(ε̂ < ε) ≈ P(∆12 < ε̃) ≈ C ε̃+ O(ε̃2)



Mean-Field Theory
Logit Differences

I In order to further test the mean-field approximation, ∆1j was
evaluated for various neural network architectures and
datasets

I ∆12 does seem to have exponent of 0, for higher j , also power
law, but typically not integral

I Compared to randomly sampled i.i.d. logits

I Shows that adversarial error has power law form for various
datasets and models; implies that commonality of adversarial
examples is not due to depth of model or high dimensionality
of data, but rather because difference between logit 1 and 2 is
frequently small



Mean-Field Theory
Logit Differences

I Graphs of logit differences for models trained on ImageNet



Mean-Field Theory
Logit Differences

I Given the large density of small ∆12 values, propose new loss
function to increase confidence of network at each sample to
increase logit differences

loss = old loss− Σn
i=1pi log pi

I Logit difference distribution was verified to have overall larger
values



Network Architectures

I Recent papers suggest that larger networks are more resistant
against adversarial examples regardless of adversarial training

I To test effects of architecture, conduct experiments
I Neural architecture search (NAS) where child models are

trained with clean and either step l.l. or PGD adversarial
examples and reward is computed on validation set with FGSM
adversarial accuracy

I Step l.l training
I Child models trained for 10 epochs on training batches where

half the samples are adversarially perturbed
I Pick model with highest adversarial accuracy and enlarge by

scaling up number of filters; train for 100 epochs on full
training set for 12 different hyperparameter sets

I Pick hyperparameter set with highest adversarial accuracy



Network Architectures

I PGD Training
I Follow procedures in Madry et al. (2017)

I Compared two experiments with baseline NAS which rewarded
clean accuracy; NAS baseline had 4.9 million trainable
parameters vs. 2.3 million (Exp. 1) and 3.5 million (Exp. 2)

I Graphs: left is step l.l adversarial accuracy, right is PGD



Network Architectures

I Next, examine performance statistics of 9,360 child models in
Experiment 1 (only 10 epochs of training)

I Very little correlation between number of trainable parameters
and adversarial accuracy

I High correlation between clean accuracy and adversarial
accuracy

I Explains why larger models are more robust against adversarial
examples

I High clean accuracy insufficient; high variance of adversarial
accuracy among high clean accuracy models



Summary

I The functional form of adversarial error and logit differences
are universal at small ε

I Entropy regularization and better network architectures can
help protect against adversarial examples

I Model architecture affects adversarial accuracy due to its
effects on clean accuracy
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