
Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine

Translation

Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, et al.

Google

arXiv:1609.08144v2

Reviewed by : Bill Zhang
University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/

Outline

Introduction

Model Architecture

Segmentation

Training Criteria

Quantized Model

Decoder

Experiments & Results

Summary

Introduction
Basic Premise and Motivation

I Standard NMTs have slow training and inference speeds, are
ineffective at dealing with rare words, and sometimes fail to
translate all source words; GNMT aims to improve upon all
these problems

I GNMT is robust and works for a variety of language pairs and
reduces error by 60% based on human evaluations

Model Architecture
Overview

I Seq-to-seq model with attention
I Encoder, decoder, and attention networks

I Define X = x1, ..., xM and Y = y1, ..., yN as the source and
target sentences

I Encoder: x1, ..., xM = EncoderRNN(x1, ..., xM)
I P(Y |X) = P(Y |x1, ..., xM)

= ΠN
i=1P(yi |y0, y1, ..., yi−1; x1, ..., xM)

I Decoder: RNN with softmax; RNN outputs a hidden state yi
then generates a probability distribution using softmax

I Deep networks perform better, so both encoder and decoder
have multiple layers

Model Architecture
Overview

I st = AttentionFunction(yt−1, xt); AttentionFunction is a 1
layer feed-forward network

I pt = exp(st)

ΣM
t=1 exp(st)

I at = ΣM
t=1ptxt

Model Architecture
Residual Connections

I Stacking LSTM layers only improves performance initially; for
translation, at around 6-8 layers, it becomes too difficult and
slow to train

I Add residual connections, which greatly improves gradient
flow in backward pass and allows for much deeper networks to
be trained

I c i
t ,m

i
t = LSTMi (c i

t−1,m
i
t−1, x

i−1
t ;W i)

I x i
t = mi

t(+x i−1
t)

I c i+1
t ,mi+1

t = LSTMi+1(c i+1
t−1,m

i+1
t−1, x

i
t ;W

i+1)

Model Architecture
Bi-directional Encoder for First Layer

I Context not necessarily left-to-right; could be in either
direction depending on language

I Use a bi-directional encoder to take this into account; only in
first layer to maximize parallelism

Parallelism

I Data
I Train n model replicas concurrently using Downpour SGD; all

n models share the same parameters and update
asynchronously; generally, n = 10

I Each replica works on minibatch of m = 128

I Model
I Each layer runs on separate GPU; since most layers are

unidirectional, (i + 1)th layer can start running before ith layer
is finished; softmax layer also partitioned

I Cannot have all bi-directional layers since both directions
would have to be finished before next layers could start

I Attention connected to bottom decoder layer, not top, because
otherwise, no parallelism possible in decoding step

Segmentation
Wordpiece Model

I Used to solve Japanese/Korean segmentation problem;
deterministic results

I Given a training corpus, select D wordpieces which maximize
language-model likelihood on training data; new wordpieces
are added in a greedy manner

I Rare entity names and numbers are handled by shared
wordpiece model between source and target language

I Wordpieces combine efficiency of words with flexibility of
characters

Segmentation
Mixed Word/Character Model

I Similar to normal word model, except OOV words are not
collapsed into <unk> character, but rather into a sequence of
characters

I Special prefixes added before characters to indicate position in
the word: (Beginning), <M> (Middle), and <E> (End)

Training Criteria
Objective Function

I Given N pairs of input-output pairs (X (i),Y ∗(i)),
OML(θ) = ΣN

i=1 logPθ(Y ∗(i)|X (i))
I Does not reward sentences close to but not exactly matching

target sentence

I ORL(θ) = ΣN
i=1ΣY∈yPθ(Y |X (i))r(Y ,Y ∗(i))

I r(Y ,Y ∗(i)) is calculated using custom GLEU score instead of
standard BLEU, which is more appropriate for an entire corpus

I GLEU is calculated by taking all subsequences of size 1, 2, 3,
or 4 tokens and taking minimum of recall (matching n-grams

total n-grams in target)

and precision (matching n-grams
total n-grams in generated)

I First train model using standard likelihood objective until
convergence, then refine using mixed objective

I Omixed(θ) = αOML(θ) + ORL(θ), α = 0.017

Quantized Model
Constraints

I NMT too computationally intensive for inference
I Constrain LSTM accumulators to [−δ, δ], δ ranges from 8.0 to

1.0 from beginning to end of training
I c

′i
t ,mi

t = LSTMi (c i
t−1,m

i
t−1, x

i−1
t ;W i)

I c i
t = max(−δ,min(δ, c

′i
t))

I x
′i
t = mi

t + x i−1
t

I x i
t = max(−δ,min(δ, x

′i
t))

I c
′i+1
t ,mi+1

t = LSTMi+1(c i+1
t−1,m

i+1
t−1, x

i
t ;W

i+1)

I Bound softmax layer output to [−γ, γ], γ empirically
determined to be 25.0

I vt = Ws ∗ yt
I v ′t = max(−γ,min(γ, vt))
I pt = softmax(v ′t)

Quantized Model
Quantized Inference

I Replace all floating point operations in previous equations and
also within LSTM with fixed-point 8 to 16-bit integer
operations

I All weight matrices converted to 8-bit integer matrices

I All accumulator values become 16-bit integers

I Sigmoid, tanh, and element-wise operations become 16-bit
integer operations

I During training, still keep floating-point precision; only
clipping occurs during training

Quantized Model
Training Perplexity

I Quantized model similar to normal model; slightly better
performance possibly due to regularization caused by clipping

I Model trained only on ML objective function, not refined
version

Decoder
Beam Search

I Add length normalization and coverage penalty to traditional
beam search

I Length normalization: shorter sentences tend to be favored by
regular beam search

I lp(Y) = (5+|Y |)α
(5+1)α

I Coverage penalty: favor sentences which cover source sentence
according to attention module

I cp(X ;Y) = β ∗ Σ
|X |
i=1 log(min(Σ

|Y |
i=1pi,j , 1.0))

I s(Y ,X) = log(P(Y |X))/lp(Y) + cp(X ;Y)

I Pruning
I Instead of 8-12 hypotheses for beam search, only consider 2-4
I Only consider tokens within beamsize of the best token score
I Once normalized best score is found, prune all hypotheses

more than beamsize from score

Experiments & Results
Datasets and Setup

I WMT’14 English-to-French

I WMT’14 English-to-German

I Google’s translation production corpora

I Tested word-based, character-based, and wordpiece-based
models

I Tested effects of objective refining and model ensembling

I 8 encoder layers, 8 decoder layers, attention is feed-forward
with 1024 nodes, each layer has 1024 LSTM nodes

I Used BLEU as well as human evaluated side by side scores as
metrics

Experiments & Results
Training Procedure

I Implemented with Tensorflow, 12 replicas running concurrently
on separate machines, parameters updated asynchronously

I Initialize all trainable parameters within [−0.04, 0.04],
gradients clipped to 5.0 norm

I Stage 1 (ML objective): Each step is mini-batch of 128
examples; start with Adam (α = 0.0002) for first 60k steps,
then switch to SGD (α = 0.5); start halving rate after 1.2M
steps

I Stage 2 (RL objective): Simply run SGD until convergence

I Dropout applied to prevent overfitting; only on ML phase, not
RL phase

Experiments & Results
ML and RL Objective Results

I BLEU and decoding time compared for GNMT across
different models, then compared with other strong baselines

I Further RL refinement results

Experiments & Results
Ensembling

I Ensembling was performed with 8 models to produce final
BLEU scores; RL-refined ensemble had slightly better scores
than ML ensemble

I Humans were asked to rate translation quality on scale of 0-6;
RL-refined ensemble had slightly worse scores than ML
ensemble

Experiments & Results
Google Production Results

I No dropout because of large training set size, no
RL-refinement because of dubious significance

I GNMT: Wordpiece models, no ensembling, shared vocabulary
of 32k

I Evaluation data: 500 randomly sampled sentences and
translations from Wikipedia and news websites

Summary

I GNMT approaches or surpasses all previously published results
I Key results

I Wordpiece model effectively handles large, open vocabularies
I Parallelism can improve efficiency of training large-scale models
I Model quantization drastically improves inference speed

I GNMT approaches average human translator results and
improves upon previous phrase-based translators by around
60%

References

I https://arxiv.org/pdf/1609.08144v2.pdf

https://arxiv.org/pdf/1609.08144v2.pdf

	Introduction
	Model Architecture
	Segmentation
	Training Criteria
	Quantized Model
	Decoder
	Experiments & Results
	Summary

