Google's Neural Machine Translation System:
Bridging the Gap between Human and Machine
Translation

Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, et al.

Google

arXiv:1609.08144v2
Reviewed by : Bill Zhang
University of Virginia
https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/

Outline

Introduction

Model Architecture
Segmentation

Training Criteria
Quantized Model
Decoder

Experiments & Results

Summary

Introduction

Basic Premise and Motivation

» Standard NMTs have slow training and inference speeds, are
ineffective at dealing with rare words, and sometimes fail to
translate all source words; GNMT aims to improve upon all
these problems

» GNMT is robust and works for a variety of language pairs and
reduces error by 60% based on human evaluations

Model Architecture

Overview

» Seg-to-seq model with attention
» Encoder, decoder, and attention networks
> Define X = x1,...,xp and Y = yi, ..., yn as the source and
target sentences
» Encoder: x1, ..., xp = EncoderRNN(xq, ..., xpm)
> P(Y|X) = P(Y|x1, ..., Xm)
=M P(yilyo, Y1, s Yie15 X1y oeey Xm1)
» Decoder: RNN with softmax; RNN outputs a hidden state y;
then generates a probability distribution using softmax
» Deep networks perform better, so both encoder and decoder
have multiple layers

Model Architecture

Overview

» s = AttentionFunction(ys—1, Xt); AttentionFunction is a 1
layer feed-forward network

__explse)
| 4 —_——_—
PE= ST exp(s)

_ s M
> ap =2, piXt

y“ — yz e sl

Encoder LSTMS *

5 De,taaer LsTMa

GPUB Gpug

? GPU3

——> Attention \
GPU2
GPU1

<ls> — y, —>

8 layers
GPU3

GPU2

GPU2

GPUL

Model Architecture

Residual Connections

» Stacking LSTM layers only improves performance initially; for
translation, at around 6-8 layers, it becomes too difficult and
slow to train

> Add residual connections, which greatly improves gradient
flow in backward pass and allows for much deeper networks to
be trained

. . . 1
> clymj = LSTMy(c}_y, mi_y, xi™% W)
> xi = mi(+x;7")
> it mitt = LSTMya (e, mity, xi; with)

Model Architecture

Bi-directional Encoder for First Layer

» Context not necessarily left-to-right; could be in either
direction depending on language

» Use a bi-directional encoder to take this into account; only in
first layer to maximize parallelism

Parallelism

» Data

» Train n model replicas concurrently using Downpour SGD; all
n models share the same parameters and update
asynchronously; generally, n = 10

» Each replica works on minibatch of m = 128

» Model

» Each layer runs on separate GPU; since most layers are
unidirectional, (i + 1)th layer can start running before ith layer
is finished; softmax layer also partitioned

» Cannot have all bi-directional layers since both directions
would have to be finished before next layers could start

» Attention connected to bottom decoder layer, not top, because
otherwise, no parallelism possible in decoding step

Segmentation
Wordpiece Model

» Used to solve Japanese/Korean segmentation problem;
deterministic results

» Given a training corpus, select D wordpieces which maximize
language-model likelihood on training data; new wordpieces
are added in a greedy manner

> Rare entity names and numbers are handled by shared
wordpiece model between source and target language

» Wordpieces combine efficiency of words with flexibility of
characters

Segmentation
Mixed Word/Character Model

» Similar to normal word model, except OOV words are not
collapsed into <unk> character, but rather into a sequence of
characters

» Special prefixes added before characters to indicate position in
the word: (Beginning), <M> (Middle), and <E> (End)

Training Criteria

Objective Function

» Given N pairs of input-output pairs (X, Y*()),
OmL(0) = TN, log Po(Y*(D| X (1)
» Does not reward sentences close to but not exactly matching
target sentence
> Ore(0) = TN Yye, Po(YIXD)r(Y, Y*(0)
» r(Y, Y*() is calculated using custom GLEU score instead of
standard BLEU, which is more appropriate for an entire corpus
» GLEU is calculated by taking all subsequences of size 1, 2, 3,

. .. hing n-
or 4 tokens and taking minimum of recall (togf:f_g':;gmz S arget)

matching n-grams)
total n-grams in generated

and precision (

» First train model using standard likelihood objective until
convergence, then refine using mixed objective

> Omixed(9) = aOpmi(0) + Ore(0), a = 0.017

Quantized Model

Constraints

» NMT too computationally intensive for inference
» Constrain LSTM accumulators to [—4,], 6 ranges from 8.0 to
1.0 from beginning to end of training
> ¢,/ymi = LSTM;(ci_,,mi_,, x{™"; W)
> c;.: maf<(—<5z min(d, c,'))
> x,' =mj| + xi—1
> xi = max(—4, min(s, x;i))
> ¢+, mitt = [STM, (et mith, xi; wi+t)
» Bound softmax layer output to [—v,~], v empirically
determined to be 25.0
v =W xy,;
> v] = max(—y, min(7y, v¢))
> p = softmax(vy)

Quantized Model

Quantized Inference

» Replace all floating point operations in previous equations and
also within LSTM with fixed-point 8 to 16-bit integer
operations

> All weight matrices converted to 8-bit integer matrices

» All accumulator values become 16-bit integers

» Sigmoid, tanh, and element-wise operations become 16-bit
integer operations

» During training, still keep floating-point precision; only
clipping occurs during training

Quantized Model

Training Perplexity
» Quantized model similar to normal model; slightly better
performance possibly due to regularization caused by clipping

» Model trained only on ML objective function, not refined
version

e NOrmal training
s Quantized training |4

Log perplexity
- N w >
- o N o w o IS o

o
o

o

o
o
IS
o
®
=)
o
r

Decoder

Beam Search

> Add length normalization and coverage penalty to traditional
beam search
» Length normalization: shorter sentences tend to be favored by
regular beam search
- Ip(Y) = G
» Coverage penalty: favor sentences which cover source sentence
according to attention module
> cp(X;Y)=pBx Z‘XI Iog(mln(Z‘ 1pi.j, 1.0))
> (Y, X) = log(P(Y|X))/Ip(Y) + cp(X; Y)
> Pruning
» Instead of 8-12 hypotheses for beam search, only consider 2-4
» Only consider tokens within beamsize of the best token score
» Once normalized best score is found, prune all hypotheses
more than beamsize from score

Experiments & Results
Datasets and Setup

» WMT'14 English-to-French
» WMT'14 English-to-German
» Google's translation production corpora

» Tested word-based, character-based, and wordpiece-based
models

» Tested effects of objective refining and model ensembling

> 8 encoder layers, 8 decoder layers, attention is feed-forward
with 1024 nodes, each layer has 1024 LSTM nodes

> Used BLEU as well as human evaluated side by side scores as
metrics

Experiments & Results

Training Procedure

» Implemented with Tensorflow, 12 replicas running concurrently
on separate machines, parameters updated asynchronously

» Initialize all trainable parameters within [—0.04, 0.04],
gradients clipped to 5.0 norm

» Stage 1 (ML objective): Each step is mini-batch of 128
examples; start with Adam (« = 0.0002) for first 60k steps,
then switch to SGD (a = 0.5); start halving rate after 1.2M
steps

» Stage 2 (RL objective): Simply run SGD until convergence

» Dropout applied to prevent overfitting; only on ML phase, not
RL phase

Experiments & Results
ML and RL Objective Results

» BLEU and decoding time compared for GNMT across
different models, then compared with other strong baselines

Table 4: Single model results on WMT En—Fr (newstest2014)

Table 5: Single model results on WMT En—De (newstest2014)

Model BLEU CPU decoding time Model BLEU CPU decoding time
per sentence (s) per sentence (s)

Word ~ 37.90 0.2226 Word 23.12 0.2972

Character ~ 38.01 1.0530 Character (512 nodes) 22.62 0.8011

WPM-8K 38.27 0.1919 WPM-8K 23.50 0.2079

WPM-16K 37.60 0.1874 WPM-16K 24.36 0.1931

WPM-32K 0.2118 WPM-32K 24.61 0.1882

Mixed Word/Character 0.2774 Mixed Word/Character ~ 24.17 0.3268
PBMT [15] PBMT [6] 20.7
LSTM (6 layers) [31 RNNSearch [37] 16.5
LSTM (6 layers + PosUnk) [31 RNNSearch-LV [37] 16.9
Deep-Att [45 RNNSearch-LV [37] 16.9
Deep-Att + PosUnk [45] Deep-Att [45] 20.6

» Further RL refinement results

Table 6: Single model test BLEU scores, averaged over 8 runs, on WMT En—Fr and En—De

Dataset Trained with log-likelihood Refined with RL
En—Fr 38.95 39.92
En—De 24.67 24.60

Experiments & Results
Ensembling

» Ensembling was performed with 8 models to produce final
BLEU scores; RL-refined ensemble had slightly better scores
than ML ensemble

» Humans were asked to rate translation quality on scale of 0-6;
RL-refined ensemble had slightly worse scores than ML
ensemble

Experiments & Results

Google Production Results

» No dropout because of large training set size, no
RL-refinement because of dubious significance

» GNMT: Wordpiece models, no ensembling, shared vocabulary

of 32k

» Evaluation data: 500 randomly sampled sentences and
translations from Wikipedia and news websites

Table 10: Mean of side-by-side scores on production data

PBMT GNMT Human Relative
Improvement
English — Spanish ~ 4.885 5.428 5.504 87%
English — French 4.932 5.295 5.496 64%
English — Chinese 4.035 4.594 4.987 58%
Spanish — English ~ 4.872 5.187 5.372 63%
French — English 5.046 5.343 5.404 83%
Chinese — English 3.694 4.263 4.636 60%

Summary

» GNMT approaches or surpasses all previously published results
> Key results
» Wordpiece model effectively handles large, open vocabularies
» Parallelism can improve efficiency of training large-scale models
» Model quantization drastically improves inference speed
» GNMT approaches average human translator results and

improves upon previous phrase-based translators by around
60%

References

» https://arxiv.org/pdf/1609.08144v2.pdf

https://arxiv.org/pdf/1609.08144v2.pdf

	Introduction
	Model Architecture
	Segmentation
	Training Criteria
	Quantized Model
	Decoder
	Experiments & Results
	Summary

