Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, et al.

Google

arXiv:1609.08144v2 Reviewed by : Bill Zhang University of Virginia https://qdata.github.io/deep2Read/

Outline

Introduction

- Model Architecture
- Segmentation
- Training Criteria
- Quantized Model
- Decoder
- Experiments & Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

Introduction

Basic Premise and Motivation

- Standard NMTs have slow training and inference speeds, are ineffective at dealing with rare words, and sometimes fail to translate all source words; GNMT aims to improve upon all these problems
- GNMT is robust and works for a variety of language pairs and reduces error by 60% based on human evaluations

Overview

- Seq-to-seq model with attention
 - Encoder, decoder, and attention networks
- ▶ Define X = x₁,..., x_M and Y = y₁,..., y_N as the source and target sentences
 - Encoder: $x_1, ..., x_M = EncoderRNN(x_1, ..., x_M)$
 - ► $P(Y|X) = P(Y|x_1, ..., x_M)$ = $\prod_{i=1}^{N} P(y_i|y_0, y_1, ..., y_{i-1}; x_1, ..., x_M)$
 - Decoder: RNN with softmax; RNN outputs a hidden state y_i then generates a probability distribution using softmax

 Deep networks perform better, so both encoder and decoder have multiple layers

Overview

► s_t = AttentionFunction(y_{t-1}, x_t); AttentionFunction is a 1 layer feed-forward network

$$p_t = \frac{\exp(s_t)}{\sum_{t=1}^{M} \exp(s_t)}$$

$$a_t = \sum_{t=1}^{M} p_t x_t$$

Residual Connections

- Stacking LSTM layers only improves performance initially; for translation, at around 6-8 layers, it becomes too difficult and slow to train
- Add residual connections, which greatly improves gradient flow in backward pass and allows for much deeper networks to be trained

•
$$c_t^i, m_t^i = LSTM_i(c_{t-1}^i, m_{t-1}^i, x_t^{i-1}; W^i)$$

$$x_t^i = m_t^i(+x_t^{i-1}) c_t^{i+1}, m_t^{i+1} = LSTM_{i+1}(c_{t-1}^{i+1}, m_{t-1}^{i+1}, x_t^i; W^{i+1})$$

Bi-directional Encoder for First Layer

- Context not necessarily left-to-right; could be in either direction depending on language
- Use a bi-directional encoder to take this into account; only in first layer to maximize parallelism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Parallelism

Data

- Train n model replicas concurrently using Downpour SGD; all n models share the same parameters and update asynchronously; generally, n = 10
- Each replica works on minibatch of m = 128
- Model
 - Each layer runs on separate GPU; since most layers are unidirectional, (i + 1)th layer can start running before ith layer is finished; softmax layer also partitioned
 - Cannot have all bi-directional layers since both directions would have to be finished before next layers could start
 - Attention connected to bottom decoder layer, not top, because otherwise, no parallelism possible in decoding step

Segmentation

Wordpiece Model

- Used to solve Japanese/Korean segmentation problem; deterministic results
- Given a training corpus, select D wordpieces which maximize language-model likelihood on training data; new wordpieces are added in a greedy manner
- Rare entity names and numbers are handled by shared wordpiece model between source and target language
- Wordpieces combine efficiency of words with flexibility of characters

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Segmentation

Mixed Word/Character Model

- Similar to normal word model, except OOV words are not collapsed into <unk> character, but rather into a sequence of characters
- Special prefixes added before characters to indicate position in the word: (Beginning), <M> (Middle), and <E> (End)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Training Criteria

Objective Function

- Given N pairs of input-output pairs $(X^{(i)}, Y^{*(i)}), O_{ML}(\theta) = \sum_{i=1}^{N} \log P_{\theta}(Y^{*(i)}|X^{(i)})$
 - Does not reward sentences close to but not exactly matching target sentence

•
$$O_{RL}(\theta) = \sum_{i=1}^{N} \Sigma_{Y \in y} P_{\theta}(Y|X^{(i)}) r(Y, Y^{*(i)})$$

- r(Y, Y^{*(i)}) is calculated using custom GLEU score instead of standard BLEU, which is more appropriate for an entire corpus
- GLEU is calculated by taking all subsequences of size 1, 2, 3, or 4 tokens and taking minimum of recall (<u>matching n-grams</u>) and precision (<u>matching n-grams</u>)
- First train model using standard likelihood objective until convergence, then refine using mixed objective

•
$$O_{mixed}(\theta) = \alpha O_{ML}(\theta) + O_{RL}(\theta), \ \alpha = 0.017$$

Quantized Model

Constraints

- NMT too computationally intensive for inference
- Constrain LSTM accumulators to [-δ, δ], δ ranges from 8.0 to 1.0 from beginning to end of training

• $c_t^{'i}, m_t^i = LSTM_i(c_{t-1}^i, m_{t-1}^i, x_t^{i-1}; W^i)$

•
$$c_t^i = max(-\delta, min(\delta, c_t^{\prime i}))$$

•
$$x_t^{'i} = m_t^i + x_t^{i-1}$$

•
$$\mathbf{x}_{t}^{i} = max(-\delta, min(\delta, \mathbf{x}_{t}^{'i}))$$

•
$$c_t^{i+1}, m_t^{i+1} = LSTM_{i+1}(c_{t-1}^{i+1}, m_{t-1}^{i+1}, x_t^i; W^{i+1})$$

 Bound softmax layer output to [-γ, γ], γ empirically determined to be 25.0

$$\mathbf{v}_t = \mathbf{W}_s * \mathbf{y}_t$$

$$\mathbf{v}_t' = max(-\gamma, min(\gamma, \mathbf{v}_t))$$

$$\mathbf{p}_t = softmax(\mathbf{v}_t')$$

Quantized Model

Quantized Inference

- Replace all floating point operations in previous equations and also within LSTM with fixed-point 8 to 16-bit integer operations
- All weight matrices converted to 8-bit integer matrices
- All accumulator values become 16-bit integers
- Sigmoid, tanh, and element-wise operations become 16-bit integer operations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 During training, still keep floating-point precision; only clipping occurs during training

Quantized Model

Training Perplexity

- Quantized model similar to normal model; slightly better performance possibly due to regularization caused by clipping
- Model trained only on ML objective function, not refined version

Decoder

Beam Search

- Add length normalization and coverage penalty to traditional beam search
 - Length normalization: shorter sentences tend to be favored by regular beam search
 - $lp(Y) = \frac{(5+|Y|)^{\alpha}}{(5+1)^{\alpha}}$
 - Coverage penalty: favor sentences which cover source sentence according to attention module
 - $cp(X; Y) = \beta * \sum_{i=1}^{|X|} log(min(\sum_{i=1}^{|Y|} p_{i,j}, 1.0))$
 - $\flat \ s(Y,X) = \log(P(Y|X))/lp(Y) + cp(X;Y)$
- Pruning
 - Instead of 8-12 hypotheses for beam search, only consider 2-4
 - Only consider tokens within *beamsize* of the best token score
 - Once normalized best score is found, prune all hypotheses more than *beamsize* from score

Datasets and Setup

- WMT'14 English-to-French
- WMT'14 English-to-German
- Google's translation production corpora
- Tested word-based, character-based, and wordpiece-based models
- Tested effects of objective refining and model ensembling
- 8 encoder layers, 8 decoder layers, attention is feed-forward with 1024 nodes, each layer has 1024 LSTM nodes
- Used BLEU as well as human evaluated side by side scores as metrics

Training Procedure

- Implemented with Tensorflow, 12 replicas running concurrently on separate machines, parameters updated asynchronously
- ► Initialize all trainable parameters within [-0.04, 0.04], gradients clipped to 5.0 norm
- Stage 1 (ML objective): Each step is mini-batch of 128 examples; start with Adam (α = 0.0002) for first 60k steps, then switch to SGD (α = 0.5); start halving rate after 1.2M steps
- Stage 2 (RL objective): Simply run SGD until convergence
- Dropout applied to prevent overfitting; only on ML phase, not RL phase

ML and RL Objective Results

BLEU and decoding time compared for GNMT across different models, then compared with other strong baselines

Table 4: Single model results on WMT $En \rightarrow Fr$ (newstest2014)			Table 5: Single model results on WMT $En \rightarrow De$ (newstest2014		
Model	BLEU	CPU decoding time per sentence (s)	Model	BLEU	CPU decoding time per sentence (s)
Word	37.90	0.2226	Word	23.12	0.2972
Character	38.01	1.0530	Character (512 nodes)	22.62	0.8011
WPM-8K	38.27	0.1919	WPM-8K	23.50	0.2079
WPM-16K	37.60	0.1874	WPM-16K	24.36	0.1931
WPM-32K	38.95	0.2118	WPM-32K	24.61	0.1882
Mixed Word/Character	38.39	0.2774	Mixed Word/Character	24.17	0.3268
PBMT [15]	37.0		PBMT [6]	20.7	
LSTM (6 layers) [31]	31.5		RNNSearch [37]	16.5	
LSTM (6 layers $+$ PosUnk) [31]	33.1		RNNSearch-LV [37]	16.9	
Deep-Att [45]	37.7		RNNSearch-LV [37]	16.9	
Deep-Att + PosUnk [45]	39.2		Deep-Att [45]	20.6	

Further RL refinement results

Table 6: Single model test BLEU scores, averaged over 8 runs, on WMT $En \rightarrow Fr$ and $En \rightarrow De$

Dataset	Trained with log-likelihood	Refined with RL
$En \rightarrow Fr$	38.95	39.92
$En \rightarrow De$	24.67	24.60

Ensembling

- Ensembling was performed with 8 models to produce final BLEU scores; RL-refined ensemble had slightly better scores than ML ensemble
- Humans were asked to rate translation quality on scale of 0-6; RL-refined ensemble had slightly worse scores than ML ensemble

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Google Production Results

- No dropout because of large training set size, no RL-refinement because of dubious significance
- GNMT: Wordpiece models, no ensembling, shared vocabulary of 32k
- Evaluation data: 500 randomly sampled sentences and translations from Wikipedia and news websites

	PBMT	GNMT	Human	Relative Improvement
English \rightarrow Spanish	4.885	5.428	5.504	87%
English \rightarrow French	4.932	5.295	5.496	64%
English \rightarrow Chinese	4.035	4.594	4.987	58%
$Spanish \rightarrow English$	4.872	5.187	5.372	63%
$French \rightarrow English$	5.046	5.343	5.404	83%
$Chinese \rightarrow English$	3.694	4.263	4.636	60%

Table 10: Mean of side-by-side scores on production data

Summary

- GNMT approaches or surpasses all previously published results
- Key results
 - Wordpiece model effectively handles large, open vocabularies
 - Parallelism can improve efficiency of training large-scale models

- Model quantization drastically improves inference speed
- GNMT approaches average human translator results and improves upon previous phrase-based translators by around 60%

References

https://arxiv.org/pdf/1609.08144v2.pdf

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ