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The Task: GANs for synthetic biology

generate genes (protein sequences) that can encode proteins with
specific properties

generate antimicrobial peptides: lower molecular weight peptides with
less than 50 amino acids
optimize secondary structure for peptides– alpha helical peptides
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Definitions

secondary structure: the three dimensional form of local segments of
proteins.

important for protein functions

two types: alpha[50 amino acids] and beta
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The Dataset generation

Uniprot database: Select 3655 proteins with length 5 − 50 residues1

Uniprot database: protein sequence records with functional
information

cluster by sequence similarity

Select one from each cluster as a representative protein

convert into cDNA sequences

get a codon for each amino acid, start codon, stop codon2

1limit the length to 50 to avoid long-term dependencies + observation of secondary
structure etc.

2The start codon marks the site at which translation into protein sequence begins,
and the stop codon marks the site at which translation ends.
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GAN

Loss function:

min
G

max
D

V (D,G ) = Ex∈Pdata(x)[log(D(x))] + Ez∈P(z)[log(1 − D(G (z)))]

(1)
WGAN more stable during training.

5 residual layers.

2 1 − D convolutions of 5 × 1

Use Gumbel Softmax instead of Softmax
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GAN

Figure: the GAN model

Train GAN to produce valid sequences for a few epochs
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The Analyzer

Figure: Function Analyzer

Analyzer to select sequences that are desirable properties

Pretrain Analyzer
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The model

Figure: The model

Use feedback mechanism to select sequences that are desirable properties
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Analyzer training

2600 experimentally verified antimicrobial properties from APD3
Database

negative set from Uniprot

Translate to cDNA and train Analyzer

can be potentially non differentiable
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Analyzer for Antimicrobial Peptide Coding genes

Classifier

Input: Gene Sequences Output: 1/0 codes for AMP or not

Positive Set of 2600 AMPs from APD3 Database

Negative set of 2600 random peptides from Uniprot

translated to cDNA
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Analyzer: Architecture

RNN architecture: 2 GRU layers of 128 size

Last time step to dense layer

sigmoid activation function: whether gene belongs to positive class or
not
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Analyzer: Check secondary structure

Wrapper around PSIPRED secondary structure predictor

PSIPRED: predict secondary structure of each aminoacid

Wrapper: gene sequence to protein sequence to PSIPRED

predicts structure of amino acids inside the protein: total number of
alpha helix tagged residues: choose above a certain cutoff

If gene to protein not possible: output 0
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Results: Generate protein coding genes

Train GAN to produce ≤ 156 nucleotides

Correct gene if start codon, some codons, stop codins

Before training, 3.125% sequences follow the correct gene structure

After training, 77.08% sequences follow correct structure
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Results: Generate protein coding genes

Figure: A set of 500 valid genes were sampled from the trained WGAN, and 10
physiochemical features were calculated for the proteins encoded by the synthetic
genes. The same 10 features were also calculated for the cDNA sequences from
Uniprot proteins. PCA was performed on the features of the natural cDNA
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Feedback analyzer: Results

training accuracy = 0.9447 and validation accuracy = 0.8613

test accuracy = 0.842
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Results: Feedback-Loop to Optimize Antimicrobial
Properties

After GAN and AMP analyzer are trained, link with feedback loop

analyzer selects sequences with P(AMP) > 0.8 and feed into
discriminator as real sequences

Replace n oldest with selected n newest
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Criteria to evaluate selected genes

does the Analyzer predict more sequences antimicrobial over time?

are the generated genes similar to real AMP wrt properties and
sequences of proteins?

After 60 epochs, nearly all predicted as anitmicrobial

93.3% of the generated sequences after closed loop training have
correct gene structure
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Figure:

Figure:
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Results: Similarity of generated vs exprimental sequences

Figure: Edit distance results

a larger proportion of sequences with a lower edit distance from the
AMP sequences

the sequences after feedback have a higher edit distance within
themselves than the antimicrobial sequences do with each other
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Results: physiochemical properties

the proteins encoded by the closed-loop sequences shift to be closer
to the positive antimicrobial peptides in five out of ten
physiochemical properties such as Length, Hydrophobicity, and
Aromaticity, and remains as similar as the sequences without feedback
for properties such as Charge and Aliphatic index.
This is true even though the analyzer operated directly on the gene
sequence rather than these physiochemical properties
the feedback mechanism did not directly optimize the physiochemical
properties that show a shift.
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Results: Secondary Structure with Black-Box PSIPRED
Analyzer

Use Secondary Structure Anayzer

secondary structure more attractive to optimize for since it arises in
short peptides of length less than 50

gene sequences with more than 5 alpha-helical residues were input
back into the discriminator as real data.

After 43 epochs of feedback, the helix length in the generated
sequences was significantly higher than the helix length without
feedback and the helix length of the original Uniprot proteins,
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Results: Secondary Structure with Black-Box PSIPRED
Analyzer

helix length was greater with feedback than without feedback

Figure: Before
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Results: Secondary Structure with Black-Box PSIPRED
Analyzer

helix length was greater with feedback than without feedback

Figure: After FBGAN
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Results: Secondary Structure

these 3D peptide structures were produced by ab initio folding from
our generated gene sequences, using knowledge-based force field
template-free folding from the QUARK server

Figure: 3d secondary structure
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