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Relational Reasoning

Original Image:

Non-elational question:

fihat is the size of

the brown sphere? 3

Relational question:

Are there any rubber
things that have the
sane size as the yellow
netallic cylinder?

Figure: An image containing four objects is shown alongside non-relational and

relational questions.|]
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Invariant Relational Reasoning

Figure: OCR: humans can accommodate other variables of presentation, including
specularity and fluctuating contrast. In contrast, computer programs that can
cope with the variability of the presentations of the characters suffer from false
alarms (false detections) between or OVGI': ):lnic the real charact:re orin the
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Invariant Relational Reasoning

MNIST Parity Label 0 Example MNIST Parity Label 1 Example

Figure 1: (Left) Label 0 example: MNIST digit pair {2, 7} with different parity (one odd digit, one
even digit) and (Right) Label 1 example: MNIST digit pair {1, 5} of the same parity (both odd
digits). Digits are subject to random translations, scalings, rotations and coloring. Best viewed in
color.

Figure: The MNIST parity task
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The Task: Invariant Relational Reasoning

Pentomino 10 Color Label 0 Example Pentomino 10 ColorLabel 1 Example

Figure 2: (Left) Label 0 example (all the shapes are of the same sprite type) and (Right) Label 1
example (there exists a sprite of a different type than the other sprites). Sprites are subject to random
translations, scalings, rotations and coloring. Best viewed in color.

Figure: The colorized Pentomimo task
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Invariant Relational Reasoning

Labels encode a semantic rule between the objects in the image
@ MNIST parity digits encode AND on the parity of the digits
@ Pentomino Task: XOR operation.

@ For example, if there are 3 sprites in each figure and two types of
sprites in the data, (AAA) or (BBB), label =0 else label=1
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Invariant Relational Reasoning

@ Invariant: the images can undergo random translation, scaling,
rotation and coloring transforms.

@ But the label doesn't change
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Deep CNNs and Importance of Invariant representations

DeepCNNs state-of-the-art in visual tasks.

work well in i.i.d settings.

o
o
@ But Adversarial Noise breaks most models.
@ very sensitive to out of distribution settings
o

Need for discriminative and highly invariant representations.
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DeepCNNSs: Distributed Representations

, Most can be interpreted as learning deep hierarchies of fully
distributed features

for features f,l, f,2 at level / of the hierarchy, these features get
applied to the same input y;_1.

Many to many relationships between two representations.

Each concept is represented by many neurons.

Each neuron participates in the representation of many concepts.!

1 Geoffrey Hinton's lecture
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Current Deep CNNs and IRR tasks
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MNIST Parity Experiments: Validation Loss
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Fully Distributed to Modularized Prior: Motivation

@ modularized: A series of functional magnetic resonance imaging
(fMRI) studies revealing substantial evidence for a distinct cortical
region in humans that responds selectively to images of the human
body, as compared with a wide range of control stimuli.]

@ Modularity leads to invariance: invariant hypothesis that
computational goal of the ventral stream is to compute an
invariant-to-transformations and discriminative signature for
recognition leads to modularity.[]
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@ require a machine learning model to learn higher order invariances

because the objects undergo random translation, scaling, rotation and
coloring transformations

additional challenge introduced by restricting the training set size

high invariance, low sample regime
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Differences between the two tasks

Object distribution:

o MNIST: curvilinear digit strokes
e Pentomino: rigid polygonal shapes

Relational Rule; XOR vs AND

Pentomino has more sparsity, and more freeedom for translation

Curved edges in MNIST vs Straight edges in Pentomino : curved are
more important for discriminative purposes.
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Invariant and Selective Representations

Il = 1) = (1) (1)
() = p(l'y = I~ (2)

Together with invariance, selectivity asserts that two points have the same
representation if and only if they are one a transformation of the other.
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Why modularize?

@ Distributed Representations are a problem when :
o large number of invariances
e small data

@ interference problem in such cases: for example in an MLP, one
neuron may receive conflicting gradient updates dependent on output
units

e but, using separate neurons for each output unit is wastage of resources
@ When a dataset has a large number of invariances, a machine learning
model must learn to associate a large number of seemingly unrelated
patterns with one another, worsens interference problem
o for example the MNIST Parity task: model must learn to associate
the digit pairing 1, 4 with 2, 7 : the same label of 0, but the digit
pairings have different geometric properties.
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Modularizing

@ specialized sub-modules in the architecture.

"In the case of invariant relational learning, we hypothesize that
modularity allows for the development of specialized neural circuitry that
can learn to associate many seemingly unrelated patterns.”
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Modularized Prior : ResMixNe

G is an E-length probability vector

he =G+ RP
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(a) M(E, D): A mixture of E experts, where each expert is a D stack of consisting of D stacks of
residual modules and a gater network G which weights all the experts and residual modules and £
forms an additive mixture. experts. Best viewed in color.
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@ The first layer: fully distributed convolutional layer

@ appropriate prior for the MNIST Parity and colorized Pentomino tasks
because each of those datasets share low level features, e.g.
curvilinear digit strokes for MNIST Parity and straight edges for the
colorized Pentomino.

@ each expert receives the same input as any other expert, but then
each expert learns its own specialized representation through its D
stack of residual modules.

@ stack two expert modules M1 and M2 together and then have the
third block be a D stack of Basic Block residual modules.
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Results: MNIST Parity

MNIST Parity Experiments: Validation Loss
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Figure 4: Average Validation Loss of the best performing models: ResNet152, VGG19-BN and
ResMixNet(2,2).

Figure: Pentomino Results
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Results:

Table 2: Pentomino 10 Color Generalization Results

Model Parameter Count Test Error
ResNet26 370K 34.61 £4.67%
ResNet50 758K 30.31 £+ 1.74%
ResNet152-Bottleneck  3.66M 31.02 £ 3.06%
VGG19-BN 20M 34.01 +£4.72%
ResMixNet(4,1) 193K 0.88 + 0.12%
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Figure 5: (Left) Train Loss and (Right) Validation Loss performance on the Pentomino 10 color
dataset. Best viewed in color.

Figure: Pentomino Results
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Results: Object Recognition

Table 3: CIFAR-10, CIFAR-100 and SVHN Results

Model Dataset ~ Num. Params Test Accuracy
ResNet50 CIFAR-10 758K 93.48%
ResMixNet(5,3)  CIFAR-10 748K 92.74%
ResNet50 CIFAR-100 764K 71.81%
ResMixNet(5,3)  CIFAR-100 754K 66.35%
ResNet50 SVHN 758K 95.45%
ResMixNet(5,3) ~ SVHN 748K 95.58%

Figure: CIFAR10 Results

@ ResMixNet may not be a good prinr fo- C'FAR-100
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Links to relevant papers

@ On invariance and selectivity in representation learning
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https://arxiv.org/pdf/1503.05938.pdf

