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GEO database

Figure: GEO data

Figure: In the NIH GEO database the median dataset size as well as the number
of datasets added each year.
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Prior Information: GeneMANIA

GeneMANIA uses a database of organism-specific weighted networks
to construct the resulting composite network.
The database includes over 1800 networks, containing over 500
million interactions for 8 organisms
The networks are organized into groups such as co-expression, where
edges are derived from expression profiles, and shared protein
domains, where edges represent genes that encode proteins with
similar domains.

Figure: Composite Network

Use such graphs to bias a model, to learn representations using info
already known in biology.
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Figure: Caption
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Gene Graph Convolutions

Graph Convolution usually used where data is in the form of graphs:
citation networks, etc

Graphs complementary to the main task in Gene Expression

Use graphs to bias the model

with low number of samples, known relationships between variables
can avoid spurious relationships.
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Background: Graph Laplacian

The graph Laplacian regularization is a summation of smoothness
terms on the variables to encourage similar coefficients on the genes
or other genomic features that are connected in the network
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Previous Work: Network Regularized Sparse Logistic
Regression

Figure: NSLR

L is the normalized Laplacian matrix encoding a prior network1

Figure: Caption

1NSLR Paper Link
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Graph Convolution

Extract information from the neighbor nodes in a graph

Graph convolutions are generalisation of convolutions, and easiest to
define in spectral domain

euclidean vs non euclidean data
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Graph convolution

Laplacian L = D − A

D: degree matrix, A : adjacency matrix

for convolution, euclidean shift-invariant definition not applicable
since the structure isnt shift-invariant

use the spectral definition (Convolution is element-wise multiplication
in the Fourier domain)

Lsym = D−1/2LD−1/2=I − D−1/2WD−1/2
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Graph Convolution

Consider X l+1 = σ(AX lθl)

Issues:

sum up all the feature vectors of all neighboring nodes but not the
node itself : Â = A + I
A is typically not normalized and therefore the multiplication with A
will completely change the scale of the feature vectors2

Symmetric Normalization: D̂−1/2ÂD̂−1/2

2https://tkipf.github.io/graph-convolutional-networks/
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Graph Convolution

θ ? X l ≈ D
′−1/2A′D ′−1/2X lθ = ÃX lθ (1)

l is layer, n is the number of nodes, o is output feature size, c is input
feature size

A′ = A + IN A is adjacency matrix

D ′i =
∑

j A
′
ij

where X l ∈ Rn×c

Ã ∈ Rn×n

θ ∈ Rc×o
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Graph Convolution for gene networks

Figure: GCN

not possible to have multiple types of interactions: all nodes are
aggregated before any transformation

possible to have different sets of parameters for different types of
interactions

But, genes do not have such interactions.
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GCN

add skip connection at each conv layer: add neighborhood as well as
node itself.

X l = Aggregate(σ(ÃX lθ1 + X lθ2)) (2)

Aggregate is hierarchical clustering.

Dropout encourages the model to spread information across all nodes
and not rely on a single node.
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Experiment 1: PANCAN

10, 459 RNA Seq samples from TCGA

16300 genes for each sample

Each sample has some cancer subtype or healthy label. (Actual labels)

Option 1: But, DNNs don’t work on this setting of actual labels.

Option 2: Use a smal subset of genes relevant for cancer subtype
detection or trait, etc.

Option 2 doesn’t work because

No assumption about which gene is relevant.
”we cannot guarantee any complex relationship is important to solve
the task”.

Option 3: Select a specific gene and binarize the label: predict using
the rest of the genes.
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Experiment : PANCAN

Figure: Adding genes based on distance

predict +1/− 1 by using the expression values of closest neighbors

add more successively till all covered
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Experiment: Add graph information

Use GeneMANIA and RegNetwork: two types of public database graphs.

Figure: Results
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Results: Quality of graphs

Genes with a > 20% AUC improvement are a minority.

Gene Mania outperforms RegNetwork

RegNetwork has twice as many edges per node

Indicating simply merging does not lead to improvement.
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Robustness to Noise

Fig in paper(Low resolution)
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