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GEOQO databas
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Figure: GEO data
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Prior Information: GeneMANIA

@ GeneMANIA uses a database of organism-specific weighted networks
to construct the resulting composite network.

@ The database includes over 1800 networks, containing over 500
million interactions for 8 organisms

@ The networks are organized into groups such as co-expression, where
edges are derived from expression profiles, and shared protein
domains, where edges represent genes that encode proteins with
similar domains.
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A Genomic Profiles: X Network: § b Network-based Regression
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Fig.3 Model-based integration of whole-genomic profiles and a molecular network. a The patient genomic profiles X along with the clinical
information: the survival time, two patient subgroups for classification and treatment response of each individual patient are shown. The
network S s typically integrated into the genomic profile analysis with a graph Laplacian regularization. The formulas of the graph Laplacian
and its regularization are shown below. The graph Laplacian regularization can be rewritten as summation of pairwise smoothness terms that
promote smoothness among the connected genomic features in the network. b The network-based linear regression and Cox regression
models are illustrated in the figure with the graph Laplacian regu irization term added to 11e origin~i cost functions. ¢ Netv ork-based
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Gene Graph Convolutions

@ Graph Convolution usually used where data is in the form of graphs:
citation networks, etc

Graphs complementary to the main task in Gene Expression

Use graphs to bias the model

@ with low number of samples, known relationships between variables
can avoid spurious relationships.
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Background: Graph Laplacian

@ The graph Laplacian regularization is a summation of smoothness
terms on the variables to encourage similar coefficients on the genes
or other genomic features that are connected in the network
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Previous Work: Network Regularized Sparse Logistic

Regression
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Figure: NSLR

L is the normalized Laplacian matrix encoding a prior network?
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Graph Convolution

@ Extract information from the neighbor nodes in a graph
@ Graph convolutions are generalisation of convolutions, and easiest to
define in spectral domain

@ euclidean vs non euclidean data
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Graph convolution

Laplacian L=D — A

D: degree matrix, A : adjacency matrix

for convolution, euclidean shift-invariant definition not applicable
since the structure isnt shift-invariant

use the spectral definition (Convolution is element-wise multiplication
in the Fourier domain)

[sym — p-1/2] p-1/2| _ p-1/2yyp-1/2
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Graph Convolution

o Consider X'*1 = o(AX'¢")
o Issues:
e sum up all the feature vectors of all neighboring nodes but not the
node itself : A=A+
e A is typically not normalized and therefore the multiplication with A
will completely change the scale of the feature vectors?
e Symmetric Normalization: D-12AD~1/2

2https:/ /tkipf.github.io/graph-convolui unal-networks/
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Graph Convolution

Ox X'~ D V2AD12X9 = AX'0 (1)

[ is layer, n is the number of nodes, o is output feature size, c is input
feature size

A" = A+ Iy A is adjacency matrix
where X! € R"*¢

A" c R™xn
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Graph Convolution for gene networks

Figure 2. An overview of the Graph Convolutional Network applied to gene expression data. At first each gene is embedded in a graph
where nei are d from prior biological ki ige. After each ion, the genes are ag; together based on their
connectivity. Finally, a prediction is made from the remaining nodes.

Figure: GCN

@ not possible to have multiple types of interactions: all nodes are
aggregated before any transformation

@ possible to have different sets of parameters for different types of
interactions

@ But, genes do not have such interactions.
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@ add skip connection at each conv layer: add neighborhood as well as
node itself.

X! = Aggregate(a(AX'01 + X'6,)) (2)
o Aggregate is hierarchical clustering.

@ Dropout encourages the model to spread information across all nodes
and not rely on a single node.
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Experiment 1: PANCAN

10,459 RNA Seq samples from TCGA

16300 genes for each sample

Each sample has some cancer subtype or healthy label. (Actual labels)
Option 1: But, DNNs don't work on this setting of actual labels.
Option 2: Use a smal subset of genes relevant for cancer subtype
detection or trait, etc.

Option 2 doesn't work because
o No assumption about which gene is relevant.
e "we cannot guarantee any complex relationship is important to solve
the task”.
Option 3: Select a specific gene and binarize the label: predict using
the rest of the genes.
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Experiment : PANCAN
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Figure: Adding genes based on distance

@ predict +1/ — 1 by using the expression values of closest neighbors
@ add more successively till all covered
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Experiment: Add graph information

Use GeneMANIA and RegNetwork: two types of public database graphs.

First Degree Neighbors vs Full Gene Set
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Figure 4. For each graph we train two MLPs to predict each of the
16k genes. One uses all genes and the other uses only the first
degree neighbors in the graph. We show the difference in AUC
between the models. If a gene has no neighbors then the model
predicts 50%. Genes with a %AUC improvement > 0 were better
predicted when only considering the first degree neighbors.

Figure: Results
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Results: Quality of graphs

Genes with a > 20% AUC improvement are a minority.
Gene Mania outperforms RegNetwork
RegNetwork has twice as many edges per node

Indicating simply merging does not lead to improvement.
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Robustness to Noise

Fig in paper(Low resolution)
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