Basic16- Basic Deep NN and Robustness

0Basics 3Reliable Adversarial-Examples robustness visualizing Interpretable Certified-Defense
Presenter Papers Paper URL Our Slides
AE Intriguing properties of neural networks / PDF  
AE Explaining and Harnessing Adversarial Examples PDF  
AE Towards Deep Learning Models Resistant to Adversarial Attacks PDF  
AE DeepFool: a simple and accurate method to fool deep neural networks PDF  
AE Towards Evaluating the Robustness of Neural Networks by Carlini and Wagner PDF PDF
Data Basic Survey of ImageNet - LSVRC competition URL PDF
Understand Understanding Black-box Predictions via Influence Functions PDF  
Understand Deep inside convolutional networks: Visualising image classification models and saliency maps PDF  
Understand BeenKim, Interpretable Machine Learning, ICML17 Tutorial [^1] PDF  
provable Provable defenses against adversarial examples via the convex outer adversarial polytope, Eric Wong, J. Zico Kolter, URL  

[^1] Notes about Interpretable Machine Learning

Notes of Interpretability in Machine Learning from Been Kim Tutorial

by Brandon Liu

Important Criteria in ML Systems
What is interpretability?
Two Branches of Interpretability
Before building any model
Building a new model
After building a model