NetGAN: Generating Graphs via Random Walks

Aleksandar Bojchevski Oleksandr Shchur Daniel Zügner Stephan Günnemann

Presenter: Yevgeny Tkach

2019 Spring @ https://qdata.github.io/deep2Read/

Executive Summary

- Graph generation via random-walks on the graph.
- The task is a sub-graph generation from a single given graph/network.

 generalization of the node2vec approach to GAN. A sub product is indeed a node embedding matrix.

NetGAN

(a) Generator architecture

(b) NetGAN architecture

Experiments

Network generation - compare network statistics to the ground truth dataset

٠

٠

Link prediction - 10% and additional 5% of the edges are removed from the graph, while preserving connectivity for validation and test sets respectively. On those edges the algorithm is evaluated on a link prediction task using AUC and Average Precision (AP).

Experiment results

Figure 3: Properties of graphs generated by NetGAN trained on CORA-ML.

Experiment results

Table 3: Link prediction performance (in %).

Method	CORA-ML		CORA		CITESEER		DBLP		Pubmed		POLBLOGS	
	AUC	AP	AUC	AP	AUC	AP	AUC	AP	AUC	AP	AUC	AP
Adamic/Adar	92.16	85.43	93.00	86.18	88.69	77.82	91.13	82.48	84.98	70.14	85.43	92.16
DC-SBM	96.03	95.15	98.01	97.45	94.77	93.13	97.05	96.57	96.76	95.64	95.46	94.93
node2vec	92.19	91.76	98.52	98.36	95.29	94.58	96.41	96.36	96.49	95.97	85.10	83.54
VGAE	95.79	96.30	97.59	97.93	95.11	96.31	96.38	96.93	94.50	96.00	93.73	94.12
NetGAN (500K)	94.00	92.32	82.31	68.47	95.18	91.93	82.45	70.28	87.39	76.55	95.06	94.61
NetGAN (100M)	95.19	95.24	84.82	88.04	96.30	96.89	86.61	89.21	93.41	94.59	95.51	94.83

Further Analysis

•

The authors further demonstrate that the latent space is incorporating information about high level characteristics of the graph, by considering a 2-dimensional noise vector down from a bivariate standard normal distribution.

Further Analysis

(a) Community histograms

(c) Left to right trajectory

Discussion

- The NetGAN approach is based exclusively on the random-walk approach for graph node representation introduced by node2vec
- Generated graphs are on par/outperform previous explicit methods
- This approach is limited to subgraph generation and it will probably perform on par or worse then SMILES based approaches for molecule generation