Junction Tree Variational Autoencoder for Molecular Graph Generation

Wengong Jin, Regina Barzilay and Tommi Jaakkola
Presentation adapted from slides by: Wengong Jin Presenter: Yevgeny Tkach

2019 Spring @
https://qdata.github.io/deep2Read/

Executive Summary

- Molecule generation using VAE. Encoding and decoding is based on spacial graph message passing algorithm.
- Instead of generating the molecule node by node which can be looked at as "character level" generation, this work builds higher level vocabulary based on tree decomposition of the molecule graph.
- Using proper "words/parts of speech" helps to make sure that the final molecule is valid.

Drug Discovery

Generate molecules with high potency

Drug Discovery

$\downarrow 3.03$

$$
2.69 \downarrow
$$

Modify molecules to increase potency

Molecular Variational Autoencoder

How to generate graphs?

Node by Node

- Not every graphs is chemically valid
- Invalid intermediate states \longrightarrow hard to validate
- Very long intermediate steps \longrightarrow difficult to train (Li et al., 2018)

Functional Group

Functional Groups

How to generate graphs?

Node by Node

Group by Group

- Shorter action sequence
- Easy to check validity

Tree Decomposition

- Generate junction tree \rightarrow Generate graph group by group
- Vocabulary size: less than 800 given 250K molecules

Our Approach

Graph \& Tree Encoder

Neural Message Passing Network (MPN)

Graph Encoding

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

Graph Encoding

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

Graph Encoding

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

Graph Encoding

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

Graph Encoding

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

Tree Encoding

To capture long range interactions

Graph \& Tree Encoder

Tree Decoder

Tree Decoder

Label Prediction

[4] Alvarez-Melis \& Jaakkola, Tree-structured decoding with doubly-recurrent neural networks

Tree Decoder

Topological Prediction: Whether to expand a child or backtrack?
Label Prediction: What is the label of a node?

Tree Decoder

Topological Prediction: Whether to expand a node or backtrack?
Label Prediction: What is the label of a node?

Tree Decoder

Label Prediction

Encodes the entire subtree of current state

Tree De日COMer

```
Algorithm 1 Tree decoding at sampling time
Require: Latent representation \(\mathbf{z}_{\mathcal{T}}\)
    1: Initialize: Tree \(\widehat{\mathcal{T}} \leftarrow \emptyset\)
    function \(\operatorname{SampleTree}(i, t)\)
    3: Set \(\mathcal{X}_{i} \leftarrow\) all cluster labels that are chemically com-
        patible with node \(i\) and its current neighbors.
    4: Set \(d_{t} \leftarrow\) expand with probability \(p_{t} . \quad \triangleright\) Eq.(11)
    5: \(\quad\) if \(d_{t}=\) expand and \(\mathcal{X}_{i} \neq \emptyset\) then
    6: \(\quad\) Create a node \(j\) and add it to tree \(\widehat{\mathcal{T}}\).
    7: \(\quad\) Sample the label of node \(j\) from \(\mathcal{X}_{i} \quad \triangleright\). Eq.(12)
    8: \(\quad\) SampleTree \((j, t+1)\)
    9: end if
10: end function
\[
\begin{align*}
& p_{t}=\sigma\left(\mathbf{u}^{d} \cdot \tau\left(\mathbf{W}_{1}^{d} \mathbf{x}_{i_{t}}+\mathbf{W}_{2}^{d} \mathbf{z}_{\mathcal{T}}+\mathbf{W}_{3}^{d} \sum_{\left(k, i_{t}\right) \in \tilde{\mathcal{E}}_{t}} \mathbf{h}_{k, i_{t}}\right)\right.  \tag{11}\\
& \mathbf{q}_{j}=\operatorname{softmax}\left(\mathbf{U}^{l} \tau\left(\mathbf{W}_{1}^{l} \mathbf{z}_{\mathcal{T}}+\mathbf{W}_{2}^{l} \mathbf{h}_{i j}\right)\right)  \tag{12}\\
& \mathcal{L}_{c}(\mathcal{T})=\sum_{t} \mathcal{L}^{d}\left(p_{t}, \hat{p}_{t}\right)+\sum_{j} \mathcal{L}^{l}\left(\mathbf{q}_{j}, \hat{\mathbf{q}}_{j}\right) \tag{13}
\end{align*}
\]

\section*{Graph Decoder}


Predicted Junction Tree


Molecular Graph

\section*{Graph Decoder}


\section*{Training? VAE?}

- The KL divergence part on the latent space is not discussed in the paper.
- \(Z_{G}\) is only used for generated subgraphs ranking so not clear how it falls in the VAE paradigm.
- From the code, training is with KL annealing following "Generating Sentences from a continuous space" paper by Bowman et al.

\section*{Experiments}
- Data: 250K compounds from ZINC dataset
- Molecule Generation: How many molecules are valid when sampled from Gaussian prior?
- Molecule Optimization
- Global: Find the best molecule in the entire latent space.
- Local: Modify a molecule to increase its potency

\section*{Beseines}

\section*{SMILES string based:}
1. Grammar VAE (GVAE) (Kusner et al., 2017);
2. Syntax-directed VAE (SD-VAE) (Dai et al., 2018)

\section*{Graph based:}
1. Graph VAE (Simonovsky \& Komodakis, 2018)
2. DeepGMG (Li et al., 2018)
[2] Li et al., Learning Deep Generative Models of Graphs, 2018
[5] Kusner et al., Grammar Variational Autoencoder, 2017
[6] Dai et al., Syntax-directed Variational Autoencoder for structured data, 2018
[7] Simonovsky \& Komodakis, GraphVAE: Towards generation of small graphs using variational autoencoders

\section*{Molecule Generation (Validity)}



\section*{Molecule Optimization (Global)}


Property: Solubility + Ease of Synthesis

\section*{Molecule Optimization (Global)}




Property Score of the Best Molecule


Property: Solubility + Ease of Synthesis

\section*{Molecule Optimization (Local)}


\section*{Molecule Optimization (Local)}


Preservation \(\approx 0.6\)


\section*{Molecule Optimization (Local)}




Preservation \(\approx 0.4\)

Average Improvement


\section*{Discussion}
- "word level" prediction can offer significant improvement by shortening the decision process.
- Latent space optimization is an interesting and powerful technique.
- "Teacher forcing" introduces data bias which can be reduced via RL techniques and the GAN complete graph valuation approach.
- Similar to SMILES this paper samples a random order in the graph tree structure when: using an arbitrary minimal spanning tree, choosing an arbitrary node to be the root of the tree, choosing a random ordering of the children of each tree node.

\section*{Thanks}


Original code is available at: https://github.com/wengong-jin/icml18-jtnn```

