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Executive Summary

Molecule generation using GAN approach
edge-by-edge generation based on reinforcement
earning

_0ss function gives is a weighted sum of adversarial
0ss, domain specitic target metrics, validity
constraints

Target metrics are optimized during the learning and
not as a post learning optimization process which
offers state of the art results in the domain

Graph representation is performed with GCN
Training of the generator performed with policy
gradient
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Run 4 MLP networks to build a 4 part action:

ay = CONCAT(aﬁrsta Qsecond s Qedge; astop)

frirst(8¢) = SOFTMAX(m (X)),

fsecond (St) = SOFTMAX(mS (Xafirst. ) X))’
fedge (St) = SOFTMAX(me(Xaz‘irst ’ Xasecond ) )’

fstop(8t) = SOFTMAX(m;(AGG(X))),

Afirst ™~ fﬁrst(st) € {Oa l}n

Qgecond ™ fsecond(st) € {Oa 1}7z+c

Qedge ™ fedge(st) € {Oa l}b
Qstop ™ fstop(st) € {0, 1}
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Check weather the suggested action is legal, based on a 3rd party
molecule checker, specifically RDKIt.

If it is legal update the state if it is hot resemble from the policy and
repeat until a legal action is proposed.

Keep track of the “step rewards” which adds and removes
punishments for suggesting legal or illegal actions.




Reward function

The reward function is built from intermediate/step reward and final
reward.

Final reward is a weighted sum over domain specific rewards and an
adversarial reward.

Domain specific rewards include scores like octanol-water partition
coefficient (logP), druglikeness (QED) and molecular weight (MW).

Adversarial reward is computed by training a discriminator using a GAN
loss to distinguish between generated and true molecules. The
discriminator is also a GCN.

moin max V(mg, Dy) = Eznpiata log Dc:')(x)] + Eznn, [log Dy(1— z)]
b



Experiments

Property Optimization - The task is to generate novel molecules whose
specified molecular properties are optimized.

Property Targeting - The task is to generate novel molecules whose
specified molecular properties are as close to the target scores as

possible.

Constrained Property Optimization - The task is to generate novel
molecules whose specified molecular properties are optimized, while also
containing a specified molecular substructure.



Experiment results

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

Penalized logP QED

Method

Ist 2nd 3rd Validity 1st 2nd 3rd  Validity
ZINC 452 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%
Hill Climbing  — — - — 0.838 0.814 0.814 100.0%
ORGAN 3.63 3.49 3.44 0.4% 0.896 0.824 0.820 2.2%
JT-VAE 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN 798 785 780 1000% 0948 0947 0946 100.0%




Experiment results

Table 2: Comparison of the effectiveness of property targeting task.

Method —2.5 < logP < -2 5 <logP <5.5 150 <MW <200 500 <MW < 550
e
Success Diversity Success Diversity Success Diversity Success Diversity
ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0 —
JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898
ORGAN 0 - 0.2% 0.909 15.1% 0.759 0.1% 0.907
GCPN 85.5% 0.392 54.7% 0.855 76.1% 0.921 74.1% 0.920
Table 3: Comparison of the performance in the constrained optimization task.
5 JT-VAE GCPN
Improvement  Similarity Success Improvement  Similarity Success
00 1.91+204 028+0.15 97.5% 4.20+1.28 0.32+0.12 100.0%
02 1.68+1.85 033+£0.13 97.1% 4.12+1.19 0.34+0.11 100.0%
04 0844145 0.51+010 83.6% 249+1.30 047+0.08 100.0%
06 021+071 0.69+0.06 46.4% 0.79+0.63 0.68+0.08 100.0%




DISCUSSION

The authors present a very clean policy training
approach without sophisticated choice of vucaulary
Junctional tree approach was not necessarily useful
INn molecule generation - It would be interesting to
check the scaffold approach with RL training
framework

Legality check of actions during training and testing
IS a powerful technic

Where applicable RL approach to optimize a target
metric seems to be more powertful then a gradient
based optimization of an approximate function



