Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation

Jiaxuan You Bowen Liu Rex Ying Vijay Pande Jure Leskovec

Presenter: Yevgeny Tkach

2019 Spring @ https://qdata.github.io/deep2Read/

Executive Summary

- Molecule generation using GAN approach
- edge-by-edge generation based on reinforcement learning
- Loss function gives is a weighted sum of adversarial loss, domain specific target metrics, validity constraints
- Target metrics are optimized during the learning and not as a post learning optimization process which offers state of the art results in the domain
- Graph representation is performed with GCN
- Training of the generator performed with policy gradient

- Graph G = (A, E, F), $A \in \{0, 1\}^{n \times n}$, $F \in \mathbb{R}^{n \times d}$, $E \in \{0, 1\}^{b \times n \times n}$, $A = \sum_{i=1}^{b} E_i$
- Run GCN $H^{(l+1)} = \operatorname{AGG}(\operatorname{ReLU}(\{\tilde{D}_i^{-\frac{1}{2}}\tilde{E}_i\tilde{D}_i^{-\frac{1}{2}}H^{(l)}W_i^{(l)}\}, \forall i \in (1, ..., b)))$

Run 4 MLP networks to build a 4 part action:

•

 $a_t = ext{CONCAT}(a_{ ext{first}}, a_{ ext{second}}, a_{ ext{edge}}, a_{ ext{stop}})$

$$\begin{split} f_{\text{first}}(s_t) &= \text{SOFTMAX}(m_f(X)), \\ f_{\text{second}}(s_t) &= \text{SOFTMAX}(m_s(X_{a_{\text{first}}}, X)), \\ f_{\text{edge}}(s_t) &= \text{SOFTMAX}(m_e(X_{a_{\text{first}}}, X_{a_{\text{second}}})), \\ f_{\text{stop}}(s_t) &= \text{SOFTMAX}(m_t(\text{AGG}(X))), \end{split}$$

$$a_{\text{first}} \sim f_{\text{first}}(s_t) \in \{0,1\}^n$$
$$a_{\text{second}} \sim f_{\text{second}}(s_t) \in \{0,1\}^{n+c}$$
$$a_{\text{edge}} \sim f_{\text{edge}}(s_t) \in \{0,1\}^b$$
$$a_{\text{stop}} \sim f_{\text{stop}}(s_t) \in \{0,1\}$$

- Check weather the suggested action is legal, based on a 3rd party molecule checker, specifically RDKit.
- If it is legal update the state if it is not resemble from the policy and repeat until a legal action is proposed.
- Keep track of the "step rewards" which adds and removes punishments for suggesting legal or illegal actions.

Reward function

- The reward function is built from intermediate/step reward and final reward.
- Final reward is a weighted sum over domain specific rewards and an adversarial reward.
- Domain specific rewards include scores like octanol-water partition coefficient (logP), druglikeness (QED) and molecular weight (MW).
- Adversarial reward is computed by training a discriminator using a GAN loss to distinguish between generated and true molecules. The discriminator is also a GCN.

$$\min_{ heta} \max_{\phi} V(\pi_{ heta}, D_{\phi}) = \mathbb{E}_{x \sim p_{data}}[\log D_{\phi}(x)] + \mathbb{E}_{x \sim \pi_{ heta}}[\log D_{\phi}(1-x)]$$

Experiments

- **Property Optimization -** The task is to generate novel molecules whose specified molecular properties are optimized.
- **Property Targeting -** The task is to generate novel molecules whose specified molecular properties are as close to the target scores as possible.

•

٠

 Constrained Property Optimization - The task is to generate novel molecules whose specified molecular properties are optimized, while also containing a specified molecular substructure.

Experiment results

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

Method	Penalized logP				QED			
Meulou	1st	2nd	3rd	Validity	1st	2nd	3rd	Validity
ZINC	4.52	4.30	4.23	100.0%	0.948	0.948	0.948	100.0%
Hill Climbing	_	_	_	_	0.838	0.814	0.814	100.0%
ORGAN JT-VAE GCPN	3.63 5.30 7.98	3.49 4.93 7.85	3.44 4.49 7.80	0.4% 100.0% 100.0%	0.896 0.925 0.948	0.824 0.911 0.947	0.820 0.910 0.946	2.2% 100.0% 100.0%

Experiment results

Table 2: Comparison of the effectiveness of property targeting task.									
Method	$-2.5 \le \log \! \mathrm{P} \le -2$		$5 \le \log P \le 5.5$		$150 \le MW \le 200$		$500 \le MW \le 550$		
	Success	Diversity	Success	Diversity	Success	Diversity	Success	Diversity	
ZINC	0.3%	0.919	1.3%	0.909	1.7%	0.938	0	_	
JT-VAE ORGAN GCPN	11.3% 0 85.5%	0.846 	7.6% 0.2% 54.7%	0.907 0.909 0.855	0.7% 15.1% 76.1%	0.824 0.759 0.921	16.0% 0.1% 74.1 %	0.898 0.907 0.920	

Table 3: Comparison of the performance in the constrained optimization task.

δ		JT-VAE		GCPN			
	Improvement	Similarity	Success	Improvement	Similarity	Success	
0.0	1.91 ± 2.04	0.28 ± 0.15	97.5%	$\textbf{4.20} \pm \textbf{1.28}$	0.32 ± 0.12	100.0%	
0.2	1.68 ± 1.85	0.33 ± 0.13	97.1%	4.12 ± 1.19	0.34 ± 0.11	100.0%	
0.4	0.84 ± 1.45	0.51 ± 0.10	83.6%	2.49 ± 1.30	0.47 ± 0.08	100.0%	
0.6	0.21 ± 0.71	0.69 ± 0.06	46.4%	0.79 ± 0.63	0.68 ± 0.08	100.0%	

Discussion

- The authors present a very clean policy training approach without sophisticated choice of vucaulary
- Junctional tree approach was not necessarily useful in molecule generation - It would be interesting to check the scaffold approach with RL training framework
- Legality check of actions during training and testing is a powerful technic
- Where applicable RL approach to optimize a target metric seems to be more powerful then a gradient based optimization of an approximate function