Graph Convolutional Matrix Completion

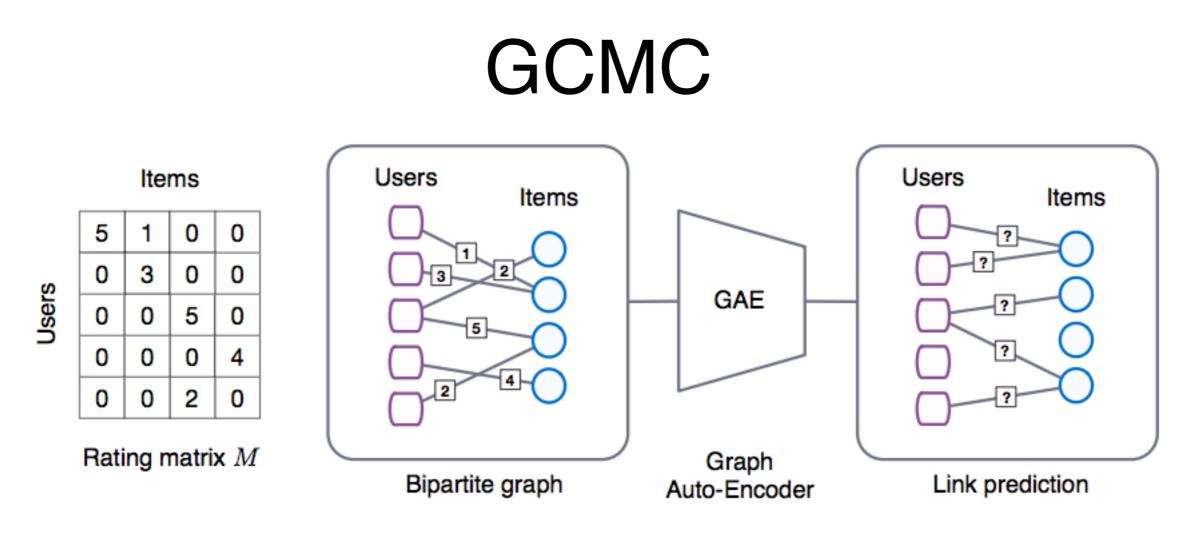
Rianne van den Berg Thomas N. Kipf Max Welling

Presenter: Yevgeny Tkach

2019 Spring @ https://qdata.github.io/deep2Read/

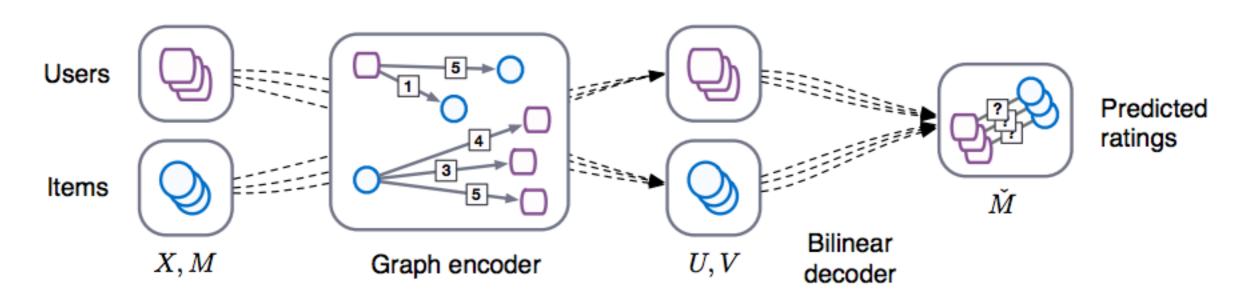
Executive Summary

- Matrix completion for recommender systems is reduced to link prediction problem on bipartite useritem graphs with an auto-encoder framework
- This formulation naturally incorporates auxiliary item/ user data (node features) in the form of graphs
- Each rating is associated with a different edge type and the predicted score is the <u>expected</u> edge type
- Authors present novel weight sharing strategy for different edge type prediction
- Experiment show competitive performance on standard collaborative filtering (CF) benchmarks and state-of-the-art on CF with user/item graphs



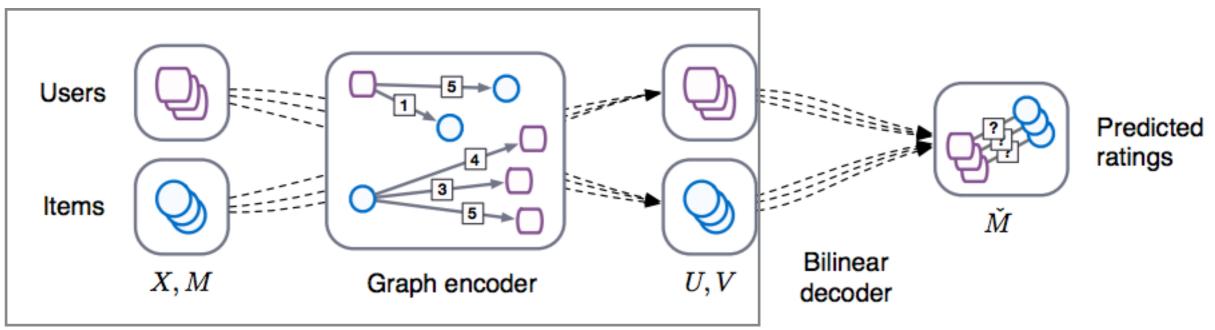
- Rating matrix *M* of shape $N_u \times N_v$, $N_u = \#$ of users, $N_v = \#$ of items
- a bipartite G=(W,E,R) is defined from the matrix such that:
 - $U \cup V = W$ where U, V are the user and item nodes, respectively.
 - Edges $(u_i, r, v_j) \in E$ where *r* are ordinal rating levels, $(u_i, r, v_j) \in E$
 - R adjacency matrices are defined M_1, \ldots, M_R where $M_r \in \{0, 1\}^{N_u \times N_v}$

Graph Auto-Encoder



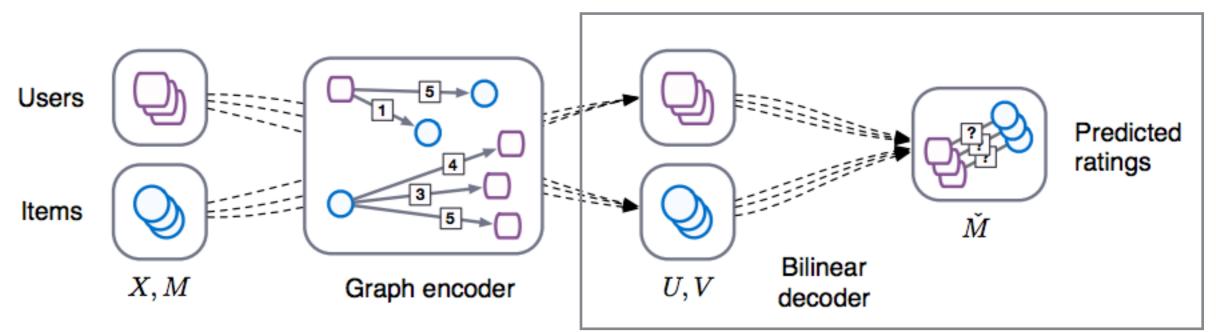
- Here X is a feature matrix of shape N×D
- Encoder produces $[U, V] = f(X, M_1, ..., M_R)$ where U and V are metrics of user and item embeddings respectively of shape $N_u \times E$ and $N_v \times E$
- The decoder tries to reconstruct the rating matrix M = g(U, V) based on the per of user and item embeddings
- M is calculated by the expectation over the rank specific adjacency matrices

Graph Convolutional Encoder



- User embeddings:
 - edge type specific message from item j to user i $\mu_{j \rightarrow i,r} = \frac{1}{c_{ij}} W_r x_j$
 - c_{ij} normalization factor $|\mathcal{N}_i|$ or $\sqrt{|\mathcal{N}_i||\mathcal{N}_j|}$
 - Weight sharing setup: $W_r = \sum_{r=1}^{r} T_s$
 - Graph Convolution layer: $h_i^{s=1} \sigma \left[\operatorname{accum} \left(\sum_{j \in \mathcal{N}_{i-1}} \mu_{j \to i,1}, \dots, \sum_{j \in \mathcal{N}_{i-R}} \mu_{j \to i,R} \right) \right]$
 - Dense layer: $u_i = \sigma(Wh_i)$
 - If user info available x_i^f , then: $u_i = \sigma(Wh_i + W_2^f f_i)$ with $f_i = \sigma(W_1^f x_i^f + b)$

Bilinear decoder



rank prediction:

•

•
$$p(\check{M}_{ij} = r) = \frac{e^{u_i^T Q_r v_j}}{\sum_{s \in R} e^{u_i^T Q_s v_j}}$$
 where:
• $Q = \sum_{n_b}^{n_b} q P_{ij}$ is a trainable parameter m

• $Q_r = \sum_{s=1}^{\infty} a_{rs} P_s$ is a trainable parameter matrix

Loss function: Negative log likelihood

$$\mathcal{L} = -\sum_{i,j; oldsymbol{\Omega}_{ij}=1}\sum_{r=1}^R I[r=M_{ij}]\log p(\check{M}_{ij}=r)$$

Experiments

- **MovieLens 100K -** user-item rating matrix that's accompanied by user and item side information.
- **MovieLens 1M and 10M -** Same as the 100K dataset with more items, users and possible ratings, and without side information. This is the current standard for comparing matrix completion algorithms.

•

 Flixster, Douban and YahooMusic - These datasets include user/item side information in the form of graphs (i.e. connecting user-user and item-item).
For GC-MC side information is represented as the relevant row from the side-graph adjacency matrix normalized by the degree.

Dataset	Users	Items	Features	Ratings	Density	Rating levels
Flixster	3,000	3,000	Users/Items	26,173	0.0029	$0.5, 1, \ldots, 5$
Douban	3,000	3,000	Users	136,891	0.0152	$1, 2, \ldots, 5$
YahooMusic	3,000	3,000	Items	5,335	0.0006	$1, 2, \ldots, 100$
MovieLens 100K (ML-100K)	943	1,682	Users/Items	100,000	0.0630	$1, 2, \ldots, 5$
MovieLens 1M (ML-1M)	6,040	3,706		1,000,209	0.0447	$1, 2, \ldots, 5$
MovieLens 10M (ML-10M)	69,878	10,677		10,000,054	0.0134	$0.5, 1, \ldots, 5$

Table 1: Number of users, items and ratings for each of the MovieLens datasets used in our experiments. We further indicate rating density and rating levels.

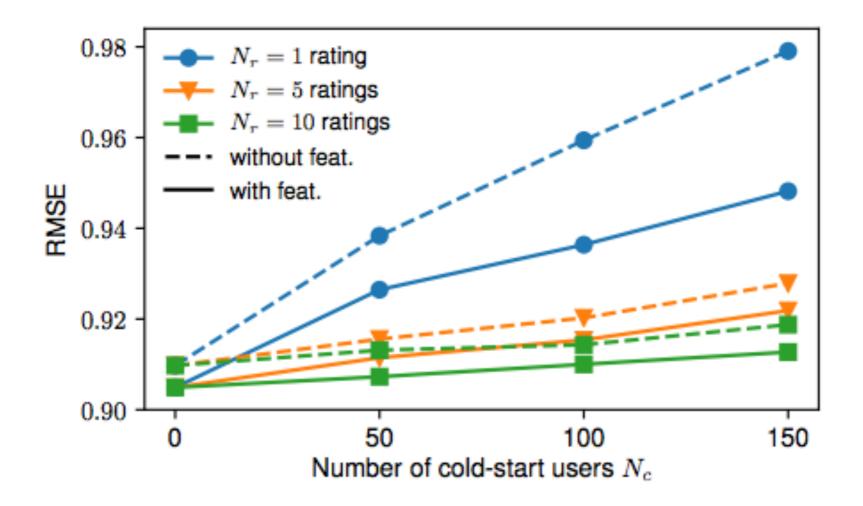
Experiment results

odel	ML-100K + Feat	Model	ML-1M
3] [11, 31] [12] LS [25] CNN [22] AC (Ours) AC+Feat	0.973 1.653 0.996 0.945 0.929 0.910 0.905	PMF [20] I-RBM [26] BiasMF [16] NNMF [7] LLORMA-Local [17] I-AUTOREC [27] CF-NADE [32] GC-MC (Ours)	0.883 0.854 0.845 0.843 0.833 0.831 0.829 0.832

Model	Flixster	Douban	YahooMusic	
GRALS	1.313/1.245	0.833	38.0	
sRGCNN	1.179/0.926	0.801	22.4	
GC-MC	0.941/0.917	0.734	20.5	

Experiment results

Cold-start analysis - The experiment looks at MovieLens100K dataset and tries to verify the added value of side information by masking the available ratings of *Nc* users to be no more than *Nr*. In the original dataset each user had at least 20 available ratings.



Discussion

- The authors present a novel interpretation of the matrix completion task as a bipartite graph edge prediction problem.
- This approach outperforms other benchmarks in incorporating auxiliary information about the users and provide almost state of the art results for large matrix completion problems.
- This problem formation is more flexible and allows to incorporate naturally different types of data and structure together.
- The authors offer a simple and clean approach for weight sharing which can be extended to different edges types as well