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Introduction

● One of the first steps in the structure-based drug design (SBDD) pipeline is identifying viable 
druggable binding sites on the target protein. This task is defined as identifying and delimiting 
protein cavities, potentially at the surface that are likely to bind to a small compound.

● Four different and complementary approaches: geometric, evolutionary, energetic or statistical
● These approaches typically exploit known binding site properties.
● In this work, we propose a machine learning algorithm based on DCNNs for predicting 

ligand-binding sites in proteins, and show that given enough training data, they are able to 
capture binding site characteristics and can outperform other two competitive algorithms by 
providing an extensive test set based on more than 7000 proteins of the scPDB database. 



Introduction - Non-NN approaches
1.  fpocket (Le Guilloux et al., 2009) uses the concept of alpha-spheres (spheres that contact four atoms but 

contain none) introduced by the MOE Site Finder to find cavities. 

2. POCKET (Levitt and Banaszak, 1992) and LigSite (Hendlich et al., 1997) search for protein-solvent-protein 
events on a determined enclosing of the protein. 

3. Pocket-Picker (Weisel et al., 2007) uses a uniform grid of points which get assigned a buriedness index.

4. PASS (Brady and Stouten, 2000) computes a coating of probe spheres with protein as substrate, with 
additional layers of probes accreted onto previously found probe spheres, keeping in the end low solvent 
exposure spheres at the point when an accretion layer no longer produces new probe spheres. 

5. Concavity (Capra et al., 2009) additionally makes use of evolutionary sequence conservation information in 
combination with other structure-based methods.
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Materials
● scPDB v.2013 database (Desaphy et al., 2015)

● Up to date selection of high-quality, non-redundant druggable binding sites extracted from the 

Protein Data Bank (PDB), focusing mostly on small synthetic or natural ligands. 

● It contains information for the pocket, the corresponding ligand and its binding mode. 

● Out of a total of 9190 structures found in the file, 12 were discarded as they contained multiple 

erroneous entries. Furthermore, the scPDB database also provides a clustering of binding sites for 

all PDB structures by Uniprot entry. To exclude identical binding sites in the training and test sets for 

an unbiased evaluation of the performance of our method, 1556 structures without clustering 

information were removed resulting in a final set of 7622 structures for analysis.



Materials
● k = 10-fold cross-validation

● The separation method ensures that the same protein pocket (possibly existing in different PDB 

structures) does not occur on both the training and test set in a split, therefore limiting the possibility 

of over-fitting. 

● In particular, we checked whether training and test sets were dissimilar enough in each of the splits 

by using directly the Shaper similarity metric matrix (Desaphy et al., 2012) provided by the scPDB 

database which reports a structural distance between binding pockets. 

● No identical pair of binding sites was found on both training and test set in any split. 
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Methods - Descriptor Computation and labeling
● Treat protein structures as 3D images. Coordinates of this 3D image are defined to span the 

bounding box of the protein plus a buffer of 8 Å to account for pockets located close to its edges. 
● The 3D image is then discretized into a grid of 1 × 1 × 1 Å^3 sized voxels. 
● Voxel occupancies are defined with respect to the atoms in the protein depending on their excluded 

volume and other seven atom properties: hydrophobic, aromatic, hydrogen bond acceptor or donor, 
positive or negative ionizable and metallic. These are called channels, to draw a comparison to 
computer vision, where an image can be represented with three different color arrays: red, green 
and blue. 

● The AutoDock 4 (Morris et al., 2009) atom types found in Table 1 were used with the rules of Table 2 
to assign each atom to a specific channel. 

● Atom occupancies were calculated by taking the simplest approximation for the pair correlation 
function defined by  









Methods - Descriptor Computation and labeling
● Subgrids of 16 × 16 × 16 voxels out of these arrays are then sampled, 

defining smaller protein areas with local properties. 
● Label each of the subgrids as positive, if its geometric center is closer than 4 

Å to the pocket geometric center ; negative otherwise. 
● We then design a DCNN which uses as input the various features (channels) 

of the subgrids and outputs the binding site label probability, in the hope of 
capturing local patterns in the structure of the grid that may help characterize 
binding pockets.
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Experiments - Evaluating pocket prediction

● Distance to the center of the binding site (DCC). This metric considers a prediction successful if a point prediction 

of the pocket is closer than a given distance threshold to the geometric center of the real-binding site. Values 

ranging between 4 and 20 Å are typically used for success rate plots. This evaluation ignores altogether the shape 

of the predicted pocket.

● Discretized volumetric overlap (DVO). For this metric, we discretize protein space into 1 × 1 × 1 Å3 voxels, and consider the 
convex hulls determined by both the real and predicted-binding site volume. We then compute a Jaccard Index, defined by  

where Vr and Vp are the set of 1 × 1 × 1 Å3 voxels that fall inside the convex hull of the real and predicted binding 
pocket respectively. This measure takes into account both pocket shape and size of the pocket prediction. The 
average of this measured is considered across all different test splits.






