

Contents lists available at ScienceDirect

Journal of Molecular Graphics and Modelling

journal homepage: www.elsevier.com/locate/JMGM

Visualizing convolutional neural network protein-ligand scoring Joshua Hochuli, Alec Helbling, Tamar Skaist, Matthew Ragoza, David Ryan Koes^{*}

Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA, 15260, United States

2019 Spring @ https://qdata.github.io/deep2Read/ Presentation by Eli Draizen 4/10/19

Background

- CNNs have been great at predicting protein-ligand interactions poses and binding affinities
- However, CNNs are difficult to interpret
- A new method is needed to:
 - Reveal which parts of the atoms are important
 - Understand how the atoms are represented at different layers
 - Understand how what aspects of the atoms the model learns to favor different classes
- Created 4 new visualization methods:
 - First layer filter heatmaps
 - Masking
 - Gradient
 - Conserved Layer-wise Relevance Propagation

Method

- 23.5 Å x 23.5 Å x 23.5 Å grids @ 0.5 width voxels
- 3 x 3 x 3 filter, stride 1
- Atom coordinates discretized into 4D grid (3D space + 1D atom type features) based on the Van der Waals radius and distance of atom to grid point
 - Will explain in detail during the Atomic Gradient

Loss Functions

Affinity

- Log units using pseudo-Huber
- Interpolated b/w L2 and L1 loss according parameter δ

$$L_{pseudo-Huber}(y,\widehat{y}) = \delta^2 \sqrt{1 + \left(rac{y-\widehat{y}}{\delta}
ight)^2} - \delta^2$$

 If low resolution (>4Å RMSD), use hinge loss instead

Pose Score

- Score poses by generating probability distribution over high res (<2Å) and low res (>4Å), scaled to [0,1] with softmax
- Logistic loss:

$$L_{pose}(y, \widehat{y}) = -\sum_{i=1}^{K} 1(y = i) \log(\sigma(\widehat{y})_i)$$
$$\sigma(\widehat{y})_i = \frac{e^{\widehat{y}_i}}{\sum_{j=1}^{K} e^{\widehat{y}_j}}$$

Input Data

Data Sources

- Known poses, binding sites, and binding affinities from PDBBind2016 (15,814 protein-ligand complexes)
- 2. Alternate conformers of ligand generated with RDKit and redocked using Vina
- 3. Predicted poses from model after 3 rounds of iteratively training

Total: 255,035 protein-ligand complexes

Features

Table 1

The 35 atom types used in gnina. Carbon atoms are distinguished by aromaticity and adjacency to polar atoms ("NonHydrophobe"). Polar atoms are distinguished by hydrogen bonding propensity.

Receptor Atom Types	Ligand Atom Types
AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSNonHydrophobe AromaticCarbonXSNonHydrophobe Calcium Iron Magnesium Nitrogen NitrogenXSAcceptor NitrogenXSDonorAcceptor OxygenXSDonorAcceptor OxygenXSDonorAcceptor Phosphorus Sulfur Zinc	AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSNonHydrophobe AromaticCarbonXSNonHydrophobe Bromine Chlorine Fluorine Nitrogen Nitrogen NitrogenXSAcceptor NitrogenXSDonorAcceptor Oxygen OxygenXSAcceptor OxygenXSDonorAcceptor Phosphorus Sulfur
	Iodine Boron

Results

- Trained in 150,00 iterations with batch size 50
- Each batch balanced number of low- and high-res poses
- Every pose is randomly rotated and translated relative to ligand center
- Tested against other CSAR dataset not in training data:

Results (Docked Poses)

(a) 100h: 2.698/0.255

(b) 1w4o: 4.933/0.983

(c) 4djv: 5.951/0.894

Convolutional Filter Visualization (Averaged)

- First layer shows how network maps atoms types
- Averaged over all dimensions (3x3x3)
- Some types have low avg wts cross all filters (metals)
 - Network isn't overfitting rare metals
- Some types have all neg vals
 - Network learned to turn off those filters.
 Removing them may make simpler model

Convolutional Filter Visualization (Full)

-0.15

Convolutional Filter Visualization (Full)

Masking

- Repeat for all ligand atoms, color atoms by masking score
- Repeat for all protein residues in binding site, color residue by masking score
- Computationally demanding since the NN is run many times

Atomic Gradient

- All atomic coordinates (not discretized) are used directly as input
- Discretization is differentiable and is what is fed into NN

$$g(d,r) = \begin{cases} e^{-\frac{2d^2}{r^2}} & 0 \le d < r \\ \frac{4}{e^2 r^2} d^2 - \frac{12}{e^2 r} d + \frac{9}{e^2} & r \le d < 1.5r \\ 0 & d \ge 1.5r \\ \text{Discritation function with VDW} \\ \text{and distance of atom to voxel} \end{cases} \quad \begin{array}{l} \frac{\partial g}{\partial d} = \begin{cases} -\frac{4d}{r^2} e^{\frac{-2d^2}{r^2}} & 0 \le d \le r \\ \frac{8}{e^2 r^2} d - \frac{12}{e^2 r} & r < d < 1.5r \\ 0 & d \ge 1.5r \\ \text{Differentiable with} \\ \text{respect to distance} \end{array} \quad \begin{array}{l} \frac{\partial f}{\partial a} = \sum_{g \in G_a} \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} \frac{\partial d}{\partial a} \\ \frac{\partial f}{\partial a} = \sum_{g \in G_a} \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} \frac{\partial g}{\partial a} \frac{\partial f}{\partial a} \\ \frac{\partial f}{\partial a} = \sum_{g \in G_a} \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} \frac{\partial g}{\partial a} \frac{\partial f}{\partial a} \\ \frac{\partial f}{\partial a} = \sum_{g \in G_a} \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} \frac{\partial g}{\partial a} \frac{\partial g}{\partial a} \frac{\partial f}{\partial a} \\ \frac{\partial f}{\partial a} = \sum_{g \in G_a} \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} \frac{\partial g}{\partial a} \frac{\partial f}{\partial a} \\ \frac{\partial f}{\partial a} = \sum_{g \in G_a} \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} \frac{\partial g}{\partial a} \frac{\partial f}{\partial a} \\ \frac{\partial f}{\partial a} = \sum_{g \in G_a} \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} \frac{\partial g}{\partial a} \frac{\partial f}{\partial a} \\ \frac{\partial f}{\partial a} = \sum_{g \in G_a} \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} \frac{\partial g}{\partial a} \frac{\partial g}{\partial a} \frac{\partial g}{\partial a} \frac{\partial f}{\partial a} \\ \frac{\partial f}{\partial a} = \sum_{g \in G_a} \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} \frac{\partial g}{\partial a} \frac{\partial g}{\partial a} \frac{\partial g}{\partial a} \frac{\partial f}{\partial a} \\ \frac{\partial f}{\partial a} = \sum_{g \in G_a} \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} \frac{\partial g}{\partial a} \frac{\partial f}{\partial a} \frac{\partial g}{\partial a} \frac{\partial f}{\partial a} \frac{\partial g}{\partial a} \frac{\partial g}$$

- Give insight into how input should be changed to produce a better output
- Calculated forward pass first, then the backward pass computes loss gradient
- Negative vector is how atom should be moved in 3D space

Conserved Layer-wise Relevance Propagation (CLRP)

- Calculates a Relevance score that is propagated back through NN
- "Performed proportionally to the input activations of each layer, such that the relevance of node i in layer I is the sum of the relevances of its successor nodes, j, weighted by the activation value generated along the edge zij during the forward pass"

Input activation:
$$z_{ij} = x_i w_{ij}$$
, where node *i* is in layer *l* with successor node *j*

$$R_i^{(l)} = \sum_j \frac{z_{ij}}{\sum_{i'j}} R_j^{(l+1)} \qquad \qquad f(x) = \dots = \sum_{d \in l+1} R_d^{(l+1)} = \sum_{d \in l} R_d^{(l)} = \dots = \sum_d R_d^{(1)}$$
Invariant across layers

• Redistribute relevance directed at dead nodes to remaining nodes in layer

$$S_{l} = \sum_{j} \begin{cases} 0 & z_{j} \neq 0 \\ R_{j} & z_{j} = 0 \end{cases} \qquad R_{j} = \begin{cases} 0 & z_{j} = 0 \\ R_{j} + \frac{z_{j}}{Z_{l}} * S_{l} & z_{j} \neq 0 \end{cases}$$

Ο

Results (low scoring complex)

Affinity Prediction Score = 2.698

(a) Gradient

(b) CLRP

Pose Score = 0.255

(c) Masking

- Gradients
 - Move aromatic away from his => not learned to value aromatics
- CLRP
 - Focuses on central ribose => highlight decision boundaries?
- Masking
 - Aromatic isn't favored?

(d) Gradient

(e) CLRP

(f) Masking

Results (low affinity score, high pose score)

Affinity Prediction Score = 4.933

(a) Gradient

(b) CLRP

(c) Masking

CLRP

- Phosphate and uracil groups more relevant
- Masking
 - T45 is more favorable, which interacts with uracil

(d) Gradient

(e) CLRP

(f) Masking

Pose Prediction Score = 0.983

Results (middling affinity score, good pose score)

Affinity Prediction Score = 5.951

(a) Gradient

(b) CLRP

Pose Score = 0.894

(c) Masking

- Gradient
 - Arrows in ring point ot center => smaller func group?
 - Shift?
 - Masking
 Disfavors
 aromatics
- CLRP
 - C and O of carbonyl counter-balance => artifact of decompsong score to atoms?

(d) Gradient

(e) CLRP

(f) Masking

Additive Analysis

- Can individual atom masking scores sum to the total score?
 - Linear relationship: score can be decomposed
- Pose scoring
 - Squashed to [0, 1], changes not that meaningful
- Affinity prediction is more correlated

Atomic Score Correlations From Different Methods

1.0

1.0

- Some agreement b/w Gradient and CLRP
- However, there is a general lack of • correlation, which shows each score will provide a different insights

Analyzing Empty Space

- 99% of dead nodes in 1st layer
 o Implicit solvent?
- Green: favorable relevance scores. If the protein or ligand filled this space it would have a higher score
- Red: Unfavorable relevance scores. If the protein or ligand filled this space it would have a lower score

Conclusion

- All visualizations methods relay different information
- **Gradient:** Can show what the NN "wants" to produce a higher scoring output in a single forward and backward pass
- **CLRP:** Preserves the relevance of each atom in a single forward and backward pass
- **Masking:** Manipulate the input to understand the changes in values. Very costly since it runs NN thousands of times

DeepMind

Input

Predict pairwise interactions using a MaxEnt model on CATH cluster reps (~6k):

From EVFold Output for Ras, From John Ingram, Debbie Marks Lab

Auxiliary losses

Helix Sheet -

We know the contact map encodes secondary structure

A distance network should be good at predicting it

. -

- Auxiliary loss of secondary structure from 1D reductions
- . for both (i, i+63) and (j, j+63) Ensembled across all 2D crops
- Q3 Accuracy on CASP11 ~84% 0
- Predicting secondary structure improves contact prediction 0

Two N x 8 secondary structure predictions

NXN Input features

DeepMind

0

 $N \times N \times 40$ Distance predictions

Accuracy vs computational cost

Repeated gradient descent

Using simple vdW instead of score2

Highly parallelizable