Visualizing convolutional neural network protein-ligand scoring

Joshua Hochuli, Alec Helbling, Tamar Skaist, Matthew Ragoza, David Ryan Koes*

Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA, 15260, United States

2019 Spring @ https://qdata.github.io/deep2Read/

Presentation by Eli Draizen

4/10/19
Background

- CNNs have been great at predicting protein-ligand interactions poses and binding affinities
- However, CNNs are difficult to interpret
- A new method is needed to:
 - Reveal which parts of the atoms are important
 - Understand how the atoms are represented at different layers
 - Understand how what aspects of the atoms the model learns to favor different classes
- Created 4 new visualization methods:
 - First layer filter heatmaps
 - Masking
 - Gradient
 - Conserved Layer-wise Relevance Propagation
Method

- 23.5 Å x 23.5 Å x 23.5 Å grids @ 0.5 width voxels
- 3 x 3 x 3 filter, stride 1
- Atom coordinates discretized into 4D grid (3D space + 1D atom type features) based on the Van der Waals radius and distance of atom to grid point
 - Will explain in detail during the Atomic Gradient
Loss Functions

Affinity
- Log units using pseudo-Huber
- Interpolated b/w L2 and L1 loss according parameter δ

$$L_{\text{pseudo-Huber}}(y, \hat{y}) = \delta^2 \sqrt{1 + \left(\frac{y - \hat{y}}{\delta} \right)^2} - \delta^2$$

- If low resolution (>4Å RMSD), use hinge loss instead

Pose Score
- Score poses by generating probability distribution over high res (<2Å) and low res (>4Å), scaled to [0,1] with softmax
- Logistic loss:

$$L_{\text{pose}}(y, \hat{y}) = - \sum_{i=1}^{K} 1(y = i) \log(\sigma(\hat{y})_i)$$

$$\sigma(\hat{y})_i = \frac{e^{\hat{y}_i}}{\sum_{j=1}^{K} e^{\hat{y}_j}}$$
Input Data

Data Sources

1. Known poses, binding sites, and binding affinities from PDBBind2016 (15,814 protein-ligand complexes)
2. Alternate conformers of ligand generated with RDKit and redocked using Vina
3. Predicted poses from model after 3 rounds of iteratively training

Total: 255,035 protein-ligand complexes

Features

<table>
<thead>
<tr>
<th>Receptor Atom Types</th>
<th>Ligand Atom Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>AliphaticCarbonXSHydrophobe</td>
<td>AliphaticCarbonXSHydrophobe</td>
</tr>
<tr>
<td>AliphaticCarbonXSNonHydrophobe</td>
<td>AliphaticCarbonXSNonHydrophobe</td>
</tr>
<tr>
<td>AromaticCarbonXSHydrophobe</td>
<td>AromaticCarbonXSHydrophobe</td>
</tr>
<tr>
<td>AromaticCarbonXSNonHydrophobe</td>
<td>AromaticCarbonXSNonHydrophobe</td>
</tr>
<tr>
<td>Calcium</td>
<td>Bromine</td>
</tr>
<tr>
<td>Iron</td>
<td>Chlorine</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Fluorine</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NitrogenXSAcceptor</td>
<td>NitrogenXSAcceptor</td>
</tr>
<tr>
<td>NitrogenXSDonor</td>
<td>NitrogenXSDonor</td>
</tr>
<tr>
<td>NitrogenXSDonorAcceptor</td>
<td>NitrogenXSDonorAcceptor</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Oxygen</td>
</tr>
<tr>
<td>OxygenXSAcceptor</td>
<td>OxygenXSAcceptor</td>
</tr>
<tr>
<td>OxygenXSDonorAcceptor</td>
<td>OxygenXSDonorAcceptor</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>Sulfur</td>
<td>Sulfur</td>
</tr>
<tr>
<td>Zinc</td>
<td>SulfurAcceptor</td>
</tr>
<tr>
<td></td>
<td>Iodine</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
</tr>
</tbody>
</table>
Results

- Trained in 150,000 iterations with batch size 50
- Each batch balanced number of low- and high-res poses
- Every pose is randomly rotated and translated relative to ligand center
- Tested against other CSAR dataset not in training data:

![Graph](attachment:image.png)

(a) ROC curve showing TPR vs FPR for CNN (AUC=0.89) and Vina (AUC=0.61)

(b) Scatter plot comparing prediction vs experiment results for CNN (R=0.74, RMSE=1.44) and Vina (R=0.55, RMSE=1.86)
Results (Docked Poses)

(a) 1o0h: 2.698/0.255
(b) 1w4o: 4.933/0.983
(c) 4dv: 5.951/0.894
Convolutional Filter Visualization (Averaged)

- First layer shows how network maps atoms types
- Averaged over all dimensions (3x3x3)
- Some types have low avg wts cross all filters (metals)
 - Network isn't overfitting rare metals
- Some types have all neg vals
 - Network learned to turn off those filters. Removing them may make simpler model
Convolutional Filter Visualization (Full)
Convolutional Filter Visualization (Full)
Masking

- Repeat for all ligand atoms, color atoms by masking score
- Repeat for all protein residues in binding site, color residue by masking score
- Computationally demanding since the NN is run many times
Atomic Gradient

- All atomic coordinates (not discretized) are used directly as input
- Discretization is differentiable and is what is fed into NN

\[g(d, r) = \begin{cases}
 e^{-\frac{2d^2}{r^2}} & 0 \leq d < r \\
 \frac{4}{e^2r^2} d^2 - \frac{12}{e^2} d + \frac{9}{e^2} & r \leq d < 1.5r \\
 0 & d \geq 1.5r
\end{cases} \]

\[\frac{\partial g}{\partial d} = \begin{cases}
 \frac{4d}{r^2} e^{-\frac{2d^2}{r^2}} & 0 \leq d \leq r \\
 \frac{8}{e^2r^2} d - \frac{12}{e^2} & r < d < 1.5r \\
 0 & d \geq 1.5r
\end{cases} \]

Discritation function with VDW and distance of atom to voxel

Differentiable with respect to distance

\[\frac{\partial f}{\partial a} = \sum_{g \in G_a} \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} \frac{\partial d}{\partial a} \]

Grad of scoring func w/ respect coordinates -- chain rule + sum over grid points with same atom type that overlap the atom, Ga

- Give insight into how input should be changed to produce a better output
- Calculated forward pass first, then the backward pass computes loss gradient
- Negative vector is how atom should be moved in 3D space
Conserved Layer-wise Relevance Propagation (CLRP)

- Calculates a Relevance score that is propagated back through NN
- “Performed proportionally to the input activations of each layer, such that the relevance of node \(i \) in layer \(l \) is the sum of the relevances of its successor nodes, \(j \), weighted by the activation value generated along the edge \(z_{ij} \) during the forward pass”
 - Input activation: \(z_{ij} = x_i w_{ij} \), where node \(i \) is in layer \(l \) with successor node \(j \)
 \[
 R_i^{(l)} = \sum_j \frac{z_{ij}}{\sum_i z_{ij}} R_j^{(l+1)}
 \]
 \[
 f(x) = \ldots = \sum_{d \in l+1} R_d^{(l+1)} = \sum_{d \in l} R_d^{(l)} = \ldots = \sum_d R_d^{(1)}
 \]
 Invariant across layers
- Redistribute relevance directed at dead nodes to remaining nodes in layer

\[
S_l = \sum_j \begin{cases}
0 & \text{if } z_j \neq 0 \\
R_j & \text{if } z_j = 0
\end{cases} \\
R_j = \begin{cases}
0 & \text{if } z_j = 0 \\
R_j + \frac{z_j}{S_l} & \text{if } z_j \neq 0
\end{cases}
\]
Results (low scoring complex)

Affinity Prediction Score = 2.698

- **Gradients**
 - Move aromatic away from his => not learned to value aromatics

- **CLRP**
 - Focuses on central ribose => highlight decision boundaries?

- **Masking**
 - Aromatic isn't favored?
Results (low affinity score, high pose score)

Affinity Prediction Score = 4.933

- CLRPR
 - Phosphate and uracil groups more relevant

- Masking
 - T45 is more favorable, which interacts with uracil
Results (middling affinity score, good pose score)

Affinity Prediction Score = 5.951

- Gradient
 - Arrows in ring point ot center => smaller func group?
 - Shift?
- Masking
 - Disfavors aromatics
- CLRP
 - C and O of carbonyl counter-balance => artifact of decomposing score to atoms?
Additive Analysis

- Can individual atom masking scores sum to the total score?
 - Linear relationship: score can be decomposed
- Pose scoring
 - Squashed to [0, 1], changes not that meaningful
- Affinity prediction is more correlated
Atomic Score Correlations From Different Methods

- Some agreement b/w Gradient and CLRP
- However, there is a general lack of correlation, which shows each score will provide a different insights
Analyzing Empty Space

- 99% of dead nodes in 1st layer
 - Implicit solvent?
- **Green**: favorable relevance scores. If the protein or ligand filled this space it would have a higher score
- **Red**: unfavorable relevance scores. If the protein or ligand filled this space it would have a lower score
Conclusion

- All visualizations methods relay different information
- **Gradient:** Can show what the NN “wants” to produce a higher scoring output in a single forward and backward pass
- **CLRP:** Preserves the relevance of each atom in a single forward and backward pass
- **Masking:** Manipulate the input to understand the changes in values. Very costly since it runs NN thousands of times
DeepMind
Input

Predict pairwise interactions using a MaxEnt model on CATH cluster reps (~6k):

\[P(\sigma|h,J) = \frac{1}{Z(h,J)} \exp\left(\sum_{i=1}^{N} h_i(\sigma_i) + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} J_{ij}(\sigma_i,\sigma_j) \right) \]

From EVFold Output for Ras, From John Ingram, Debbie Marks Lab
Deep Dilated Convolutional Residual network

1 residual block
Modifies a 64x64x128 representation from the previous block

Repeat 220 times, cycling through dilations 1, 2, 4, 8

21 million parameters

Dilated convolutions
Efficient long-range interaction

Batch norm
Elu
Project down
64 dim
Batch norm
Elu
3x3 dilated
Batch norm
Elu
Project up
128 dim

N x N Input features

Residual network blocks

N x N Distance predictions
Auxiliary losses

- We know the contact map encodes secondary structure
 - A distance network should be good at predicting it
- Auxiliary loss of secondary structure from 1D reductions for both (i, i+63) and (j, j+63)
 - Ensembled across all 2D crops
- Q3 Accuracy on CASP11 ~84%
- Predicting secondary structure improves contact prediction

Two N x 8 secondary structure predictions

N x N Input features

N x N x 40 Distance predictions
Accuracy vs computational cost

Repeated gradient descent

Using simple vdW instead of score2

Highly parallelizable

(Averaged over a subset of targets)