2019 Spring @ https://qdata.github.io/deep2Read/

Attentive cross-modal paratope prediction

Andreea Deac, Petar Velickovic, Pietro Sormanni

Presented By Eli Draizen

Background

- Antibodies are easier to create than small molecules
 - Created via phage display, 'evolution in the lab'
 - More variable
- Antibodies as drugs are becoming more popular
- The challenge becomes creating binding site sequences in Antibody

Kaplon and Reichert. mAbs. 2019 Feb-Mar; 11(2): 219-238.

Antibody structure

The Cell, Alberts; Biochemistry, Lehninger

Definitions

- **Paratope:** Binding site on antibody
 - On average 40–50 residues, while only around 18–19 residues are in contact with antigen
- **Epitope:** Binding site on antigen
- **Antigen:** Target protein (E.g. from parasite)

Problem Statement

Goal: Given a CDR and antigen sequence, predict if it will bind an antigen

Previous Approaches

- Template-based: sequence or structural homology from alignments of to one side of interface with Ab-Ab structures
- Residue propensities of known Ab-Ag complexes
 - Probability distributions based on a Kolmogorov-Smirnov test (Ab-i-Patch)

Parapred

1-hot residue features

Fast-ParaPred

Figure 1. The Fast-Parapred architecture.

- Substitute RNN with:
 - Dilated Convolutions
 - 3 layers 64,128,256
 feats with rates 1,2,4
 - Self-attention layer
- **ab** is AntiBody CDR sequence
- **p** is classification of binding site or not

AG-Fast-Parapred

Figure 4. The AG-Fast-Parapred architecture.

- Include <u>all</u> residues from AntiGen
- Same Dilated Convolutions as with **ab**
- Update attention weights where ab is the query and ag as key/value:

$$\alpha_{ij} = \frac{\exp\left(\operatorname{LeakyReLU}\left(\vec{\mathbf{a}}^{T}[\mathbf{W}_{1}\vec{b}_{i}\|\mathbf{W}_{2}\vec{g}_{j}]\right)\right)}{\sum_{k\in\nu_{i}}\exp\left(\operatorname{LeakyReLU}\left(\vec{\mathbf{a}}^{T}[\mathbf{W}_{1}\vec{b}_{i}\|\mathbf{W}_{2}\vec{g}_{k}]\right)\right)}$$
(5)

Experiments

- Data collected from Structural Antibody Database (SAbDB)
 - All: 3522 pdb structures
 - Filtered: ~304 structures
- Results after 10 rounds of 10-fold Cross Validation:

Method	ROC AUC	MCC	Epoch time
proABC (Olimpieri et al., 2013)	0.851	0.522	
Parapred (Liberis et al., 2018)	0.880 ± 0.002	0.564 ± 0.007	$0.190\pm0.019\mathrm{s}$
Fast-Parapred (ours)	0.883 ± 0.001	0.572 ± 0.004	$0.085 \pm 0.015 \mathrm{s}$
AG-Fast-Parapred (ours)	0.899 ± 0.004	0.598 ± 0.012	$0.178\pm0.020\mathrm{s}$

Results

Results

Left: Ab-Ag complex.

Right: Normalized Ag attention weights

Warmer closers indicate higher probabilities and coefficients

Conclusion

- Fast-Parapred outperforms current state of the art method and does not use any antigen sequence
- AG-Fast-Parapred outperfoms Fast-Parapred since it uses knowlege of antigen sequences, which maybe at the binding site.
- No 3D coordinates used

Drawbacks:

- A CDR sequence is needed, not a generative model
- Trained on a small dataset

Relation to our project

- 1. Predict binding sites on target protein and potential superfamilies it my bind to using GraphNN
- 2. Only include those residues in AG-Fast-ParaPred

or

- 3. Find partner bind site with complimentary shape and charge
 - a. Search through examples of target superfamily with interacting superfamily
- 4. Given structure of antibody without variable regions, design new variable region with similar geometry and charge to the partner binding site or
 - a. Denoising Autoencoder/GAN