
Towards Federated Learning at Scale: System

Design

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, et al.

2019 [1]

Presenter: Derrick Blakely

April 24, 2019

University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/


Table of contents

1. Background and Problem

2. Federated Learning

3. Results

4. Discussion

5. Questions

1



Background and Problem



Motivation

Figure 1: (A) Personalize model locally, (B) aggregate many users’ model

updates, and (C) update global model

2



Motivation

• ML without centralizing data in a data center

• On-device item ranking

• Content suggestions for keyboards

• Next word prediction

3



Problem Setting

• Millions of phones with copy of model for inference

• Want to use them for training

• Don’t want to drain phone battery or strain user’s data plan

• Protect privacy

• System needs to be fault tolerant

4



Parallelizing ML

Figure 2: Model-parallelism

Figure 3: Data-parallelism

5



Model Synchronization

• Parameter-server

• Decentralized: AllReduce, Gather-Apply-Scatter, and variants

• Any of these can be synchronous, stale synchronous, asynchronous

training

Figure 4: Synchronous Parameter-server

6



Federated Learning



Overview of the System

• FL Server: global model

• FL population: set of devices that periodically compute weight

updates

• Push weights to FL server; data never leaves the devices

• Aggregate weights

7



Protocol

1. Selection: FL server selects a sub-population to participate

2. Configuration: FL server sends FL plan and checkpoint model

3. Reporting: listen for weight updates and aggregate them

8



Protocol

Figure 5: Overview of system protocol

9



Federated Averaging

10



Pace Steering

1. Manage the number of devices participating in training

2. Adjust to avoid “thundering herd” problem

11



Device-Side

Figure 6: Device software architecture 12



Device-Side

• Example store (e.g., SQLlite DB)

• FL runtime

• Job invocation: FL runtime contacts FL server

• Task execution: FL plan received from FL server

• Reporting: sends updates to FL server

• Multi-tenancy: device can be part of many FL population

13



Attestation

• Want anonymous participation

• Exclude authentication

• Risk of poisoned data from extraneous actors

• Android remote attestation mechanism

• Need to circumvent content farms

14



Server-Side: Actor Design Pattern

• Instead of threads, use “actor” processes as concurrent primitives

• Actors don’t share data/state except by message passing

• Actors can create other actors

• Allows for concurrency to scale on the fly

• Fairly fault-tolerant

15



FL Server Design

16



Secure Aggregation

• Uses multi-party computation protocol from [2]

• Key exchange protocol based on Shamir’s Secret Sharing [3]

• Server can aggregate encrypted weight updates, but can’t decrypt

weights from individual devices

• O(n2) for n protocol participants

• Requires devices synchronize, hence they use synchronized learning

17



Tools and Workflow

Figure 7: Workflow for training in the FL framework

18



Results



Results in Production

• Used for several Google apps with around 10 million devices

• Up to 10K devices participate at once

• 6-10% of devices drop out due to errors, network failures, or changes

in eligibility

• Federated training time is 7x slower

19



Participation and Round Completion

Figure 8: Connected devices and completion rate. Rounds typically completed

at night, not during the day.

20



Discussion



Pros

• Built-in mechanisms to protect privacy

• Very interesting application of multiparty computation

• Robust to device dropout and other faults

• Modernizing the parameter-server model

• Training on data not available in data center

21



Cons

• Training time is 7 times slower than in-data center training

• Federated Averaging can’t handle more than a few hundred devices

in parallel

• Example store could have very old data

• Doesn’t distinguish between FL tasks the user actually uses

• Manipulable by content farms

• Doesn’t reduce energy usage with quantization or compression

• Data distribution can vary between users and regions

• Secure aggregation is O(n2) for n devices

22



Lessons Learned

• Bring the model to the data; not the data to the model

• Don’t need to violate privacy to train good models

• Federated computation is bigger than ML

• MapReduce and centralized ML are analogous tasks

• Interesting application of the actor model

23



Questions



References i

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,

V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan,

et al.

Towards federated learning at scale: System design.

arXiv preprint arXiv:1902.01046, 2019.

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,

S. Patel, D. Ramage, A. Segal, and K. Seth.

Practical secure aggregation for privacy-preserving machine

learning.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 1175–1191. ACM, 2017.

A. Shamir.

How to share a secret.

Communications of the ACM, 22(11):612–613, 1979.

24



References ii

25


	Background and Problem
	Federated Learning
	Results
	Discussion
	Questions

