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Background and Problem



Figure 1: (A) Personalize model locally, (B) aggregate many users’ model
updates, and (C) update global model



e ML without centralizing data in a data center
e On-device item ranking
e Content suggestions for keyboards

e Next word prediction
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Problem Setting

Millions of phones with copy of model for inference

Want to use them for training

e Don't want to drain phone battery or strain user's data plan

Protect privacy

System needs to be fault tolerant
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Figure 2: Model-parallelism
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Figure 3: Data-parallelism



Model Synchronization

e Parameter-server
e Decentralized: AllReduce, Gather-Apply-Scatter, and variants
e Any of these can be synchronous, stale synchronous, asynchronous

training
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Figure 4: Synchronous Parameter-server



Federated Learning



Overview of the System

FL Server: global model

FL population: set of devices that periodically compute weight
updates

Push weights to FL server; data never leaves the devices

Aggregate weights

Cloud-Hosted Mobile Intelligence Federated Learning
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1. Selection: FL server selects a sub-population to participate
2. Configuration: FL server sends FL plan and checkpoint model

3. Reporting: listen for weight updates and aggregate them



Protocol
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Figure 5: Overview of system protocol



Federated Averaging

Algorithm 1 FederatedAveraging targeting updates
from K clients per round.
Server executes:
initialize wq
for eachround ¢t = 1,2,... do
Select 1.3K eligible clients to compute updates
Wait for updates from K clients (indexed 1,..., K)
(A n*) = ClientUpdate(w) from client k € [K].
Wy =3, AF 1/ Sum of weighted updates
ny =y, nt /I Sum of weights
A, = AF/a, Il Average update
Wiyl < Wy + At

ClientUpdate(w):
B + (local data divided into minibatches)
n < |B| !/ Update weight
Winit $— W
for batch b € B do
w +— w — nVE(w;b)
A+ mn (w—wm) / Weighted update
/! Note A\ is more amenable to compression than w
return (A, n) to server
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1. Manage the number of devices participating in training

2. Adjust to avoid “thundering herd” problem
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Device
Process boundaryi(inter or intra app)

{ App Process n:. FL Runtime }

/
[ Example Store

model update

Figure 6: Device software architecture 12



Example store (e.g., SQLlite DB)

FL runtime

Job invocation: FL runtime contacts FL server

e Task execution: FL plan received from FL server

Reporting: sends updates to FL server

Multi-tenancy: device can be part of many FL population
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Attestation

Want anonymous participation

Exclude authentication

Risk of poisoned data from extraneous actors

Android remote attestation mechanism

Need to circumvent content farms
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Server-Side: Actor Design Pattern

e Instead of threads, use “actor”" processes as concurrent primitives
e Actors don't share data/state except by message passing

e Actors can create other actors

Allows for concurrency to scale on the fly

Fairly fault-tolerant
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FL Server Design
| Coordinator

creates

coordinates coordinates

Master Aggregator

creates

_______________________________________

connections from devices

D Persistent (long-lived) actor

+ Ephemeral (short-lived) actor
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Secure Aggregation

e Uses multi-party computation protocol from [2]
e Key exchange protocol based on Shamir's Secret Sharing [3]

e Server can aggregate encrypted weight updates, but can’t decrypt
weights from individual devices

e O(n?) for n protocol participants

e Requires devices synchronize, hence they use synchronized learning

Federated Learning Federated Learning with Secure Aggregation
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Tools and Workflow

Towards Federated Learning at Scale: System Design

development environment : production environment

Model Program
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Figure 7: Workflow for training in the FL framework
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Results




Results in Production

Used for several Google apps with around 10 million devices

Up to 10K devices participate at once

6-10% of devices drop out due to errors, network failures, or changes
in eligibility

Federated training time is 7x slower
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Participation and Round Completion

Connected Devices
—ATTESTING —CLOSING —PARTICIPATING —WAITING ¥

Round Completion Rate
ABORTED —COMPLETED —FAILED —RETRIED ¥

Rounds / hour

255ep 26Sep 27Sep

Figure 8: Connected devices and completion rate. Rounds typically completed

at night, not during the day.
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Discussion




Built-in mechanisms to protect privacy

Very interesting application of multiparty computation

Robust to device dropout and other faults
e Modernizing the parameter-server model

e Training on data not available in data center
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Cons

e Training time is 7 times slower than in-data center training

e Federated Averaging can't handle more than a few hundred devices
in parallel

e Example store could have very old data

e Doesn't distinguish between FL tasks the user actually uses

e Manipulable by content farms

e Doesn't reduce energy usage with quantization or compression
e Data distribution can vary between users and regions

e Secure aggregation is O(n?) for n devices
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Lessons Learned

Bring the model to the data; not the data to the model

Don't need to violate privacy to train good models

Federated computation is bigger than ML

MapReduce and centralized ML are analogous tasks

Interesting application of the actor model
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Questions
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