XNOR-NET: IMAGENET CLASSIFICATION USING BINARY CONVOLUTIONAL NEURAL NETWORKS

RYAN MCCAMPBELL

2019 SPRING @ HTTPS://QDATA.GITHUB.IO/DEEP2READ

PROBLEM

• Ordinary neural networks are expensive to store and evaluate

- Not good for embedded and mobile platforms
- How to make them more efficient?

APPROACHES

- More compact networks
- Compressing pre-trained networks
- Quantizing parameters
- Binarizing parameters/activations

BINARY-WEIGHT-NETWORK

- Idea: store weights as binary vectors, ± 1 , plus scale $W \approx \alpha B$, $\alpha > 0$, $B \in \{-1,1\}$ în
- $I * W \approx (I \oplus B) \alpha$
- \oplus : convolution using only addition/subtraction
- Eliminates most multiplications
- ~32x storage reduction

BINARY-WEIGHT-NETWORK

• Minimize $J(B,\alpha) = ||W - \alpha B||/12$ $B^{\uparrow *} = sign(W)$ $\alpha^{\uparrow *} = \sum |W \downarrow i|/n = 1/n ||W||/J1$

TRAINING

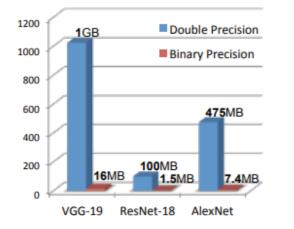
• Binarize weights during forward pass and backwards pass

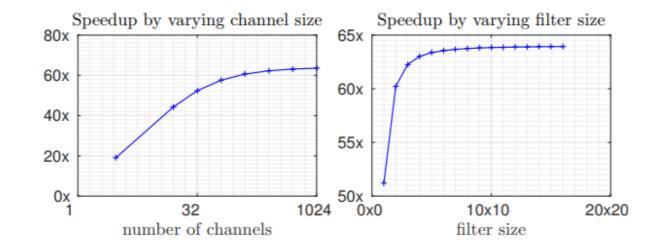
- Use full-parameter weights for update
- Approximate $\partial/\partial x \operatorname{sign}(x) = 1[|r| \le 1]$

XNOR-NET

- Binarize both weights and inputs
- Convolutions using efficient binary operations: shift, XNOR & bit-count

 $\mathbf{I} \ast \mathbf{W} \approx (\mathrm{sign}(\mathbf{I}) \circledast \mathrm{sign}(\mathbf{W})) \odot \mathbf{K} \alpha$


- $K \downarrow ij = \beta = 1/n ||subtensor of X at ij|| \downarrow 1$
- $K = A * k, A = \sum |I \downarrow :; i|/c, k \downarrow ij = 1/wh$


TRAINING XNOR-NET

- Batch normalization first
- Binary activation: compute K and sign(I)
- Binary convolution
- Pool after convolution

RESULTS

RESULTS

Classification Accuracy(%)										
Binary-Weight				Binary-Input-Binary-Weight				Full-Precision		
BV	BWN		BC[11]		XNOR-Net		BNN[11]		AlexNet[1]	
Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	
56.8	79.4	35.4	61.0	44.2	69.2	27.9	50.42	56.6	80.2	