10/30

/19 Yanj

UVA CS 6316: URRRaRIA
Machine Learning

Lecture 15c: Recent Deep Neural
Networks: A Quick Overview

Dr. Yanjun Qi

University of Virginia
Department of Computer Science

jun Qi / UVA CS



Today

* Deep Learning
* History
* A Few Recent trends
https://qdata.github.io/deep2Read/
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https://qdata.github.io/deep2Read/

Early History

* In 1950 English mathematician Alan Turing wrote a landmark paper titled
“Computing Machinery and Intelligence” that asked the question: “Can
machines think?”

e Further work came out of a 1956 workshop at Dartmouth sponsored by
John McCarthy. In the proposal for that workshop, he coined the phrase a
“study of artificial intelligence”

* 1950s

 Samuel’ s checker player : start of machine learning
* Selfridge’ s Pandemonium

e 1952-1969: Enthusiasm: Lots of work on neural networks

* 1970s-80s: Expert s¥stems Knowledge bases to add on rule-based
inference, Decision Trees, Bayes Nets

* 1990s : CNN, RNN, ....

* 2000s : SVM, Kernel machines, Structured learning, Graphical models,
semi-supervised, matrix factorization, ...
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Deep Learning (CNN) in the 90’s

* Prof. Yann LeCun invented Convolutional Neural Networks (CNN) in 1998
* First NN successfully trained with many layers

C3: f. maps 16@10x10

C1: feature maps 4: f. 1
INPUT M S maps 16@5x5
S2: f. maps

32x32
6@14x14

|
I Full oonrlection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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Deep Learning (RNN) in the 90’s

* Prof. Schmidhuber invented "Long short-term memory” — Recurrent
NN (LSTM-RNN) model in 1997
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@ @ The repeating module in an LSTM contains four interacting

layers.

Sepp Hochreiter; Jirgen Schmidhuber (1997). "Long short-term memory". Neural Computation. 9 (8): 1735-1780.

Image Credits from Christopher Olah
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“Winter of Neural Networks” in ~2000s

* Non-convex

* Need a lot of tricks to play with
* How many layers ?
* How many hidden units per layer ?
* What topology among layers ? .......

* Hard to perform theoretical analysis

* Large labeled datasets are rare



Arch

ImageNet Challenge

2010-11: hand-crafted

computer vision pipelines 0.3 oz8
2012-2016: ConvNets S = ‘
o 2012: AlexNet o
m major deep learning success  § 0.2 Bis
o 2013: ZFNet = '
m improvements over AlexNet = Ak
o 2014 @ oL 0.07
m VGGNet: deeper, simpler < 0.036 (.03
m InceptionNet: deeper, faster O 0 [ ] %
© 2215ResNet' even deeper 2010 2011 2012 2013 2014 2015 2016 2017
o 2016 ILSVRC year
m ensembled networks
o 2017

m Squeeze and Excitation Network

Adapt from From NIPS 2017 DL Trend Tutorial
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MIT
Technology
Review

10 Breakthrough
Technologies
2013

hink of the most frustrating, intractable,
or simply annoying problems you can

imagine. Now think about what
technology is doing to fix them. That's what we did
in coming up with our annual list of 10 Breakthrough
Technologies. We're looking for technologies that
we believe will expand the scope of human
possibilities.

Deep Learning

10 Breakthrough
Technologies
2017

hese technologies all have staying power.
They will affect the economy and our

politics, improve medicine, or influence our
culture. Some are unfolding now; others will take a

decade or more to develop. But you should know
about all of them right now.

Deep Reinforcement Learning

Why breakthrough ?

11/5/19
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DNNSs help us build more intelligent computers

* Perceive the world,

e e.g., objective recognition, speech recognition, ...
 Understand the world,

* e.g., machine translation, text semantic understanding
 Interact with the world,

* e.g., AlphaGo, AlphaZero, self-driving cars, ...
* Being able to think / reason,

* e.g., learn to code programs, learn to search deepNN, ...
* Being able to imagine / to make analogy,

e e.g., learn to draw with styles, ......



Some Recent Trends

https://qdata.github.io/deep2Read/

0

1. CNN / Residual / Dynamic parameter
2. RNN / Attention / Seq2Seq / BERT ... —_ New Network
3. Neural Architecture with explicit Memory topology
4. Learning to optimize / Learning DNN architectures -
5. Autoe_ncoder/ layer-wise tram.mg } New Losses
6. Learning to learn / meta-learning/ few-shots
7. DNN on graphs / trees / sets

: : : .. New Inputs
8. NTM 4program induction / sequential decisions
9

. Generative Adversarial Networks (GAN)
10. Deep Generative models, e.g., autoregressive New Tasks
11. Deep reinforcement learning

12. Validate / Evade / Test / Understand / Verify DNNs } New Model Properties
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Machine (Deep) Learning in a Nutshell
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Task:

1

Representation:

1

Score Function:

1

Search/Optimization

1

Check / Validate
(Models, Parameters)
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A nutshell of Variations in Deep NN: Five Aspects

® Tasks:
e Discriminative prediction / Generative / Reinforce / Reasoning
e Formulate Input / Output:
e Data representation
e Architecture Design:
e Network Topology, Network Parameters
e Training / Searching / Learning
e With new losses
e With new optimization tricks
e New formulation of learning
® Scaling up with GPU, Scaling up with distributed optimization, e.g.
Asynchronous SGD
eValidation / Trust / Test / Understand ...
e Software 2.0



Building Deep Neural Nets

o

—
% _0E by
or  dy O

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Today’s Survey: Trends since ~2011

bt
Losses

-
7
Software 2.0

Inputs and Outputs

Architectures: . .
Validation

10/30/19 Yan

14
Adapt from From NIPS 2017 DL Trend Tutorial



Recent Trend (1):

Convolutional Neural Networks
(aka CNNs and ConvNets)

Architectures:
e Convolutions



Machine (Deep) Learning in a Nutshell

Task:

R 1t P e New Network Topology,
epresei ation: Network Parameters

Score Function:

1

Search/Optimization

1

Check / Validate
(Models, Parameters)
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History of ConvNets

1998 2012
Gradient-based learning applied to ImageNet Classification with Deep
document recognition [LeCun, Bottou, Convolutional Neural Networks
Bengio, Haffner] [Krizhevsky, Sutskever, Hinton, 2012]

C3:1. maps 16@10x10 " o N E . W ) —a —
INPUT %gignm S4: 1. maps 16@5x5 A AN 1 T | W= L A1

\ Ful confection Gaussian connections
[v S ping Comvolutions  Subsampling Full connection

1Strideé, Mo,
Vot 4 podiing poolir
\ J

LeNet-5 AlexNet




Important Block: Convolutional Neural Networks (CNN)

* Prof. Yann LeCun invented CNN in 1998
* First NN successfully trained with many layers

The bird occupies a local area and looks the same in different parts of an image.
We should construct neural nets which exploit these properties!

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the |IEEE 86(11): 2278-2324, 1998.
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Locality and Translation Invariance
* Locality: objects tend to have a local spatial support
 Translation invariance: object appearance is independent of location

* Can define these properties since an image lies on a grid/lattice
* ConvNet machinery applicable to other data with such properties, e.g. audio/text



CNN models Locality and Translation Invariance

Make fully-connected layer locally-connected and sharing weight

// // ! // // ’
Y= Z w;x; + b /Z//ré;r/ o 1 / U =wW*T+ b
/ weig

1Ereceptive

field V sharing | b
X w22
T oo r T

Zal

convolutional units
with 3x3 receptive field

locally-connected units
with 3x3 receptive field

Adapt from From NIPS 2017 DL Trend Tutorial
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Why CNN for Image?

[Zeiler, M. D., ECCV 2014]

Represented >
as pixels g 3 WS- ...

The most basic Use 15t layer as module Use 2" |ayer as

classifiers to build classifiers B  module ......

Can the MLP network be simplified by

considering the properties of images?



Why CNN for Image

* (1) Locality: Some patterns are much smaller than the whole image

A neuron does not have to see the whole image
to discover the pattern.
Connecting to small region with less
CEICINEES

“beak” detector

Dr. Hung-yi Lee’s CNN slides



Why CNN for Image

* (2) Translation invariance: The same patterns appear in different

regions.
“upper-left
beak” detector
0®

Do almost the same thing

They can use the same
set of parameters.

‘e
“middle beak”
S detector

Dr. Hung-yi Lee’s CNN slides



Why CNN for Image

* (3) Subsampling the pixels will not change the object

bird
bird

We can subsample the pixels to make image smaller

‘ Less parameters for the network to process the image

Dr. Hung-yi Lee’s CNN slides



The whole CNN

ey <

A 4
N 4

Max
Pooling

\

Fully Connected
Feedforward

> Can repeat
many times
Convolution

Poolin

N e

Dr. Hung-yi Lee’s CNN slides



The whole CNN

Property 1

Convolution

Property 2 Viax

el > Can repeat

many times
Property 3 Convolution

Max
Pooling

e

Dr. Hung-yi Lee’s CNN slides



The whole CNN

‘ Convolution

Max

Wt ' Al > Can repeat

Fully Connected

many times
Feedforward ‘ Convolution \

Dr. Hung-yi Lee’s CNN slides



CNN — Convolution

Those are the network
parameters to be learned.

“detector 1”
1(-1]-1

110|0]|0]|0]1 1] 1 |-1] Fiter2 ,°®
ol1](o0]|0|1]|0 1 1] 1| Matrix W,
0j0|1|1(0/|0O0

1|/o0(0|0|1]|0 1)1 71
ol1lolol1lo 11114 FiIter-2 _
ololilolilo 11111 Matrix V.‘ZSZ

O
6 x 6 image o
Each filter detects a small
S pattern (3 x 3).

Dr. Hung-yi Lee’s CNN slides



CNN — Convolution

11-1]-1
-1{1|-1]| Filterl
1(-111

stride=1

140(0J0j0]|1

Ofg1|0p0f1]|0 3 1

Ofo0|1p1§0]|0

1/0(0|0f1]0

0O(1|]0({0]|1]0

O(0|1({0]1]0

6 X 6 image

Dr. Hung-yi Lee’s CNN slides



CNN — Convolution

1(-1(-1
-1 1 |-1]| Filter1
11-111
If stride=2
100001
O|1§0§0]|1}0 3 -3
O|O0Of1f1|0¢}0
1/0({0(0|1]0
0O|1|0|0|1]|O0
ololilol1lo We set stride=1 below
6 X 6 image

Dr. Hung-yi Lee’s CNN slides



|
CNN — Convolution .

Filter 1

stride=1

6 x 6 image 3

Dr. Hung-yi Lee’s CNN slides



“detector 2”

Fifter 2

CNN — Convolution

stride=1 Do the same process for
every filter

6 x 6 image

4 x 4 image

Dr. Hung-yi Lee’s CNN slides



“detector 2”

CNN — Convolution ,
-1 -1 e
-1 1| Filter2
-1 -1
stride=1 Do the same process for

every filter

6 x 6 image

4 x 4 image

Dr. Hung-yi Lee’s CNN slides



1 (-1 1 1
CNN — Convolution 201112 Fiters 21111
10-1]1 1 1

stride=1 You can do the same

6 x 6 image

4 x 4 image

process for every filter

Filter 2

Dr. Hung-yi Lee’s CNN slides



CNN — Colorful image (from matrix to tensor)

Colorful
image (R, G, B)

1(-1(-1
-111 -1
-11-111

1)1 1|1
Filter1 [H -1 1 | -1 |Filter2
1111
P P i e e
L i1/0]lol0|o0]|1
‘Hol1|lo]|0]1]0
‘Holo|1|1]0]0
‘H1ilo|lo|o]|1]0
‘Hol1]|o0|lo0|1]0
Yolol1]|0]1]0

Dr. Hung-yi Lee’s CNN slides



Convolution v.s. Fully Connected

-1

11 -

Fully-
connected

—>

Wsl

1
- (1]

convolution

Dr. Hung-yi Lee’s CNN slides



Convolution v.s. Fully Connected

When with 2
filters, 3*3*2=18
parameters!

-1

11 -

Fully-
connected

C

1
- (1]

onvolution

When 2 filters, 36*2=72 parameters!




(1) Locality: Each filter has

3*3=9 parameters!

6 x 6 image

Less parameters! 15: Ef  Only connect to

16 9 input, not fully
connected

Dr. Hung-yi Lee’s CNN slides



(2) Translation invariance:

Filter 1

1 0(0f0

0 0|0

0 1(1

110|010

0O|1|0]0 0

0O|0|1]0 0
6 x 6 image

Less parameters!

Even less parameters!
(weight sharing)

1
1

13:
14:

15:
16:

Shared weights
(same 3*3
parameters)

Dr. Hung-yi Lee’s CNN slides



The whole CNN

7 ‘ Max
$£0 L) .
\\» 7 ‘ Pooling

> Can repeat
many times

Fully Connected
Feedforward

Convolutio
n

\VEPS
‘ Pooling

Flatten

Dr. Hung-yi Lee’s CNN slides



(3) Subsampling:

CNN — Max Pooling

-
|
[N
|
[
|
(I
[HY
]
(I

[HY
]
(I

111 -1 Filter 1 -1 Filter 2
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Dr. Hung-yi Lee’s CNN slides



(3) Subsampling:

CNN — Max Pooling

1(-1(-1
-1(1 (-1
-1(-1(1

Filter 1

-

111 (-1
-1 1 |-1] Filter2
111 (-1

=

_@

Dr. Hung-yi Lee’s CNN slides



(3) Subsampling:

CNN — Max Pooling

OO |O|O|F
O|—R|IO|O0O|=~=|O
R O|O|—L|O|O
OO0, |O|O
R|lRLr|RLr|lO|R|O
OO OO |0 |F

6 x 6 image

New image
but smaller

%

Max
Pooling
2 X 2 image
Each filter
is a channel

Dr. Hung-yi Lee’s CNN slides



(3) Subsampling:

CNN — Max Pooling

New image
olololol1 but smaller
0 00110
0 1100 %
0|0 0
00 0 Max 9
0 0 0 Pooling °
2 X 2 image
6 x 6 image
Each filter
is a channel

Dr. Hung-yi Lee’s CNN slides



The whole CNN

T

B [
e

> Can repeat

many times

Convolutio
n

Smaller than the original image

The number of the channel
is the number of filters

Dr. Hung-yi Lee’s CNN slides



The whole CNN

b o

Fully Connected
Feedforward

Flatten

Dr. Hung-yi Lee’s CNN slides



Flatten

g& Flatten

Fully Connected

Feedforward
network

Dr. Hung-yi Lee’s CNN slides



] work structure and input format
CNN in Keras |+ Uty
(vector -> 3-D tensor)

1x28x28

How many parameters
yp 25 x 26 X
for each filter? S 26
model?2.add (MaxPooling2D((~,~)))

Input
model2.add( Convolution2D (
input shape=(_,
Viax
Pooling
25x 13 x
13

model?2.add (Convolution2D ( , 2, 2))

How many parameters

50x 11
for each filter? 225 X1lX

11

model?2.add (MaxPooling2D((~,~)))

50x5x5

Dr. Hung-yi Lee’s CNN slides



CNN in Keras Only modified the network structure and

input format (vector -> 3-D tensor)

input

1x28x28 4

n
25 x 26 x ‘

y
Fully Connected Ze
Feedforward

25x13 x

_— L=

.add(Denég(output_dimz
.add (Activation (
.add (Dense (output dim=
.add (Activation(

|/
1/

model?2.add (Flatten())

Dr. Hung-yi Lee’s CNN slides



More Application: Playing Go

Next move

ese O
T ' Network » (19 x 19

positions)

19 x 19 vector

matrix (image)

Black: 1 Fully-connected feedforward
white: -1 network can be used

none: 0 But CNN performs much better.

Dr. Hung-yi Lee’s CNN slides



More Application: Speech

The filters move in the
frequency direction.

Frequency

Time
Spectrogram

Dr. Hung-yi Lee’s CNN slides



Convolutional Neural Networks

[From recent Yann
LeCun slides]

Low-Level | Mid-Level _JHigh-Level_’ Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Fast-forward to today: ConvNets are everywhere

Classification Retrieval

gill fungus
fire engine | dead-man's-fingers

[Krizhevsky 2012]
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Fast-forward to today: ConvNets are everywhere

Detection Segmentation

person : 0.992

~,
- o

[ “’. %%
3 |
- 3 ‘l‘-.a.."\a =

o ¥

[Faster R-CNN: Ren, He, Girshick, Sun 2015] [Farabet et al., 2012]




Residual Trick:

Arch

Residual/Skip Connections

a shallower a deeper
model counterpart
(18 layers) (34 layers)

* Richer solutionspace

* Adeeper model should not have higher
training error

* A solution by construction:
* original layers: copied from a
learned shallower model
* extra layers: set as identity
* at least the same training error

* Optimization difficulties: solvers cannot
find the solution when going deeper...

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Arch

Revolution of Depth

NAS WINNING 28.2

152 layers

[ 22 Iayers 19 Iayers

357 I

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

11/5/19

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Adapt from From NIPS 2017 DL Trend Tutorial
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Top-1 accuracy [%]

ResNet-50

75 -

80 |
Inception-v3 ‘ A

--- - -

| | ResNet 101
’ ResNet- 34 |

- Inception-v4

| ResNet-152

VGG-16 =~ VGG-19

70 - “ ResNet-18
GoogLeNet
ENet
65
© BN-NIN | , ,
60 - 5M 35M  65M  95M  125M  155M
BN-AlexNet
55 AlexNet - @ (- (RN (S S
50 + T T T ' T T T T
0 5 10 15 20 25 30 35 40

Operations [G-Ops]



Adaptive / Dynamic Trick:

Diet Networks: Thin Parameters for Fat Genomics, ICLR 2017

Dynamic Filter Networks, NIPS 2016

Hyper Networks, ICLR 2017

Optimal Architectures in a Solvable Model of Deep Networks, NIPS16

* AdaNet: Adaptive Structural Learning of Artificial Neural Networks, ICML17

 SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction
and Model Parallelization, ICML17

* Image Question Answering using Convolutional Neural Network with Dynamic
Parameter, CVPR 2016

* Many others..



Recent Trend (2):
Recurrent Neural Networks

Architectures:

e Recurrent, over space
and/or time.
o + attention

e Attention-only!

59



Machine (Deep) Learning in a Nutshell

Task:

R 1t P e New Network Topology,
epresei ation: Network Parameters

Score Function:

1

Search/Optimization

1

Check / Validate
(Models, Parameters)
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Important Block: Recurrent Neural Networks (RNN)

* Prof. Schmidhuber invented "Long short-term memory” — Recurrent
NN (LSTM-RNN) model in 1997

ceggy 011 ¢
Hmorms A Al A
b0 6606 & o

The repeating module in an LSTM contains four interacting

layers.

Sepp Hochreiter; Jirgen Schmidhuber (1997). "Long short-term memory". Neural
Computation. 9 (8): 1735-1780.

10/30/19 Yanjun Qi / UVA CS 61

Image Credits from Christopl



Important Block: Recurrent Neural Networks (RNN)

* Prof. Schmidhuber invented "Long short-term memory” — Recurrent

NN (LSTM-RNN) model in 1997

ht — O'(WXt + Uht_l + b)

®
!

— LSTM (x;)
)
!

T
A

il

N\ [

Leel

J

AR
I

R
b b4

|
&

&
©

|
©

The repeating module in an LSTM contains four interacting

layers.

Sepp Hochreiter; Jirgen Schmidhuber (1997). "Long short-term memory". Neural

Computation. 9 (8): 1735-1780.

10/30/19 Yanjun Qi / UVA CS
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RNN models dynamic temporal dependency

 Make fully-connected layer model each unit recurrently
 Units form a directed chain graph along a sequence
 Each unit uses recent history and current input in modeling

Awesome sauce
')l f
2 ®
h. ™ h. > ¢ e 4
1 2 ‘
o W o ® :
0 > @
O O
| W | W

Xy r X,

0000| (0000
Echt dicke Kiste

LSTM for Machine Translation
(German to English)

63

Image credit : wildML



Recurrent Neural Networks (RNNs)

Traditional “Feed Forward”
Neural Network Recurrent Neural Network

predict a vector at

/ each timestep

output output

hidden hidden

input input

http://cs231n.stanford.edu/slides/



Standard “Feed-Forward” Neural Network

one to one




one to one

Recurrent Neural Networks (RNNSs)

RNNs can handle

one to many many to one many to many
Pt T bt
t Pt bt

\ e.g. Sentiment Classification
sequence of words -> sentiment

many to many

66




one to one

Recurrent Neural Networks (RNNSs)

RNNs can handle

one to many

many to one

many to many many to many
bt Pt
Pt i

\ e.g. Machine Translation
seq of words -> seq of words

67




Seq2Seq for Machine Translation

In machine translation, the input is a sequence of words
in source language, and the output is a sequence of
words in target language.

Encoder: An RNN to encode the
input sentence into a hidden

state (feature)
O
O
|—> [

Qcht

ﬂwesome
Y1

th >@ h, ﬂ
e
(0000 [o::o] o

Kiste /

Encoder-decoder architecture for machine translation

10/30/19 Yanjun Qi / UVA CS

Decoder: An RNN with
the hidden state of the
sentence in source
language as the input
and output the
translated sentence

68
Adapt from Professor Qiang Yang of HK UST



Attention Trick:

Seq2Seq with Attention

Embedding used to predict output, and compute next hidden
state

Attention X Y zZ Q
o Emeaesdec;jing ‘\T\ i/ | T
T~
g
S Pl
. X Y Z
E_ncc_)c_ler _ | f(input, h,) Decoder

10/30/19 Yanjun Qi / UVA CS
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The attention module gives us a weight for each input.

—{ Clis a weighted sum of the hidden encodings.

Us,1
1
hs
X1 X2 X3 X4 Xs
Jane visite I'Afrique en septembre

Based: Dr. Yangqiu Song’s slides



Transformer: Exploiting Self Attentions

Output
Probabilities
dl 1™
. (ASgE Nom
e A Google Brain model. ==
Forward
Variable-length input 1%
. g p . s 1 N\ Add &lNorm
Fixed-length output (but typically extended ”&‘L&.':—m] Mt Head
ee Attention
to a variable-length output) e ) e
Add & Norm
® No recurrence Nx | —(AddsNom ) ———
Multi-Head ulti-
e Surprisingly not patented. Atertion "tenton
I 1
e Uses 3 kinds of attention \ J\ /
Posmolnal @_@ ¢ Positional
e Encoder self-attention. Encoding Encoding
Input' Output
] DeCOder SE|f-attentI0n Emberdlng EmbeIddlng
® Encoder-decoder multi-head attention. Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Based: Dr. Yangqiu Song’s slides



Notable pre-trained NLP models

BERT: Bidirectional Encoder
Representations from

) o,® Transformers
ULM-FiT Pre-trained transformer encode
o | | for sentence embedding
TRANSFORMER
), " | [S—
—— IC
' v BERT
o - y
‘: ELMo |

ELMo: Embeddings from Language Models
Pre-trained biLSTM for contextual embedding

Based: Dr. Yangqiu Song’s slides



Open Al's GPT-2 is a really large transformer.

Different tasks use the OpenAl transformer in different
Ways.

Classification Start Text Extract }' Transformer | Linear

Entailment Start Premise Delim | Hypothesis | Extract |+ Transformer | Linear

Start Text 1 Delim Text 2 Extract | = Transformer
Similarity = Linear

Start Text 2 Delim Text 1 Extract | = Transformer

Start Context Delim Answer 1 | Extract | Transformer — Linear
Multiple Choice | Start Context Delim | Answer 2 | Extract |\» Transformer (> Linear
Start Context Delim Answer N Extract | - Transformer | Linear

Based: Dr. Yangqiu Song’s slides



Recent Trend (3):
Neural Architectures with Memory

Architectures:
memory and multi-hop
reasoning to perform Al
tasks better

74



Machine (Deep) Learning in a Nutshell

Task:

R 1t P e New Network Topology,
epresei ation: Network Parameters

Score Function:

1

Search/Optimization

1

Check / Validate
(Models, Parameters)
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e.g. for Story Comprehension

loe went to the kitchen. Fred went to the kitc

picked up the milk.|Joe travelled to his office.

nen. Joe

milk.

loe left the

Joe went to the bathroom.

Questions from
Joe’s angry mother: Q1 - Where is Joe?

W2 : Where is the milk now?

3 : Where was Joe before the office?




Need external explicit memory
for long-range reasoning

Deeper Al tasks require explicit memory and
multi-hop reasoning over it

* RNNs have short memory

e Cannot increase memory without increasing number
of parameters

* Need for compartmentalized memory

* Read/Write should be asynchronous



End-To-End Memory Networks, ~— roommemmeeeeees L e !
Sukhbaatar et. al., NIPS 2015
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Multi-hop

MemN2N j W }Ha
P o’
Hop 3 Predicted
____________ C : § 3 Answer

3
A3
\b 02
Cc* o
________________________ > 5
' Different | _3 \ ________________
Memories and Sentences bkt =k ok .
. Outputs for ol /0 Ttrrrtrrrmees
 each Hop -
“““““““““““““ Cl )
& [ul
ﬁ—ﬁ
End-To-End Memory Networks, Sukhbaatar et. al., NIPS 2015 ;
Question g ”
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Neural Architectures with Memory

* Antoine Bordes, Y-Lan Boureau, Jason Weston, Learning End-to-End
Goal-Oriented Dialog, ICLR 2017

 Karol Kurach, Marcin Andrychowicz & llya Sutskever Neural Random-
Access Machines, ICLR, 2016

* Emilio Parisotto & Ruslan Salakhutdinov Neural Map: Structured Memory
for Deep Reinforcement Learning, ArXiv, 2017

* Oriol Vinyals,Meire Fortunato, Navdeep Jaitly Pointer Networks, ArXiv,
2017

* Jack W Rae et al., Scaling Memory-Augmented Neural Networks with
Sparse Reads and Writes, ArXiv 2016

* Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, Honglak Lee,
Control of Memory, Active Perception, and Action in Minecraft, ICML
2016

* Wojciech Zaremba, llya Sutskever, Reinforcement Learning Neural Turing
Machines, ArXiv 2016



Arch

Attention and Memory Toolbox .
Attention/Pointgrs |

Sequence Prediction Multimodality

.....
?iiii

Read/Write memories

COSINE DISTANCE

{input} N K (ke My() = e Me®)

I ke I M) ||

READ WEIGHTS
exp(K (ke, M (i)

3, exp(K (ke ML (j)))

wi(i)

READ VECTOR
o Y w()My(i)

WRITE WEIGHTS
wi « a(a)wj_, + (1 - o(a))wi*,
nnnnn

USAGE WEIGHTS Layer ™
Wy W W W

LEAST-USED WEIGHTS
0 ifwp(i) > m(wp,n
1 ifwp(i) < m(w¥,n

3

wi(i) =

m @0 000000000C0C0COCCOO

MEMORY UPDATING
M, (i) « My (i) + wif (i)ke. Vi

Recurrent Architectures

oS o

Figure credits: Jeff Dean, Chris Olah, Santoro et al 2016, Koutnik et al
2014, van den Oord et al 2016, Miller et al 2016, Vinyals et al 2016
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Recent Trend (4):
Learning to Optimize / Learning to Search DNN
architecture

Inputs and Outputs Losses



Machine (Deep) Learning in a Nutshell

Task:

1

Representation:

1

Score Function:

1

‘ Search/Optimization

Check / Validate
(Models, Parameters)
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Neural Architecture Search with Reinforcement Learning, ICLR17

Sample architecture A

with probability p
Trains a child network
The controller (RNN) with architecture
A to get accuracy R
Compute gradient of p and

scale it by R to update
the controller

Figure 1: An overview of Neural Architecture Search.

Number_ Filter [ Filter | | Stride | [ Stride | [Number Filter [
“ |of Filters|, | Height [+ | Width [ | Height |2 | Width [\ |of Filters|. | Height [\
—f o ol B o Bl o
.u 'l 'l ‘n ‘I 'I ‘I 'I
| A LA LA | A LA LA LA | A
" » <
Layer N-1 Layer N

> < )

Layer N+1



Neural Optimizer

Search with

Reinforcement
Learning,
ICML17

- e.g. hyperpara
search

10/30/19 Yanjun Qi /

Neural Optimizer Search with Reinforcement Learning

sgd

RMSProp Adam

/

/
tmpl \

Adam

\
/ * \ /
\
\
Identity Identity Identity Identity Identity | | Identity Identity
0 60 06 66 ®

~ -~

—

Figure 2. Computation graph of some commonly used optimizers: SGD, RMSProp, Adam. Here, we show the computation of Adam in

1 step and 2 steps. Blue boxes correspond to input primitives or temporary outputs, yellow boxes are unary functions and gray boxes
represent binary functions. g is the gradient, 7 is the bias-corrected running estimate of the gradient, and © is the bias-corrected running
estimate of the squared gradient.

Soft 1st 2nd Unary Unary Binary 1st 2nd
ortmax operand operand A ops ops ops A operand operand |
\ \ \ \ \ \ \
| e N T A S A N A A
state | | | | | | |
A | A | A | A | A | A | A 1
| | | | | | |
| 1 | | | | \
Embedding ! ! | ! \ ! b,
\ \ \ \ \ \ \
<start> N N N N N . N
< 1st group

2nd group ——
Figure 3. Overview of the controller RNN. The controller iteratively selects subsequences of length 5. It first selects the 1st and 2nd
operands op; and op2, then 2 unary functions u; and u to apply to the operands and finally a binary function b that combines the
outputs of the unary functions. The resulting b(u1 (op1), u2(op2)) then becomes an operand that can be selected in the subsequent group

of predictions or becomes the update rule. Every prediction is carried out by a softmax classifier and then fed into the next time step as
input.



Recent Trend (5): Layer-wise
oretraining / Auto-Encoder

Losses



Machine (Deep) Learning in a Nutshell

—

Task:

1

Representation:

1

Score Function:

1

Search/Optimization

1

Check / Validate
(Models, Parameters)

10/30/19 Yanjun Qi / UVA CS

eTraining / Searching / Learning
e \With new losses
e \With new optimization tips
eNew formulation of learning
eScaling up with GPU, Scaling
up with distributed
optimization, e.g.
Asynchronous SGD

87
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Recap: “Block View”

h;

1st
hidden layer

-

“Softmax

2nd
hidden layer

1) |

<

23 —
v
R¥

A X *

* ¥

.

Output layer

E@y)

Loss Module
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an auto-encoder-decoder is trained to reproduce the input

output -
Tdecode

Minimize diff
hidden - 2 >
| X- X|

encode

o ) S| mmm) 2y

Input

Reconstruction Loss: force the ‘hidden layer’ units to become
good / reliable feature detectors

89

10/30/19 Yanjun Qi / UVA CS
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The new way to train multi-layer NNss. ..

i

10/30/19 Yanjun Qi / UVA CS 90
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The new way to train multi-layer NNss. ..

SEEEL

Train this layer first

10/30/19 Yanjun Qi / UVA CS 91
https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt



The new way to train multi-layer NNss. ..

R

Train this layer first

then this layer

then this laver

then this laver
10/30/19 Yanjun Qi / UVA CS fina”y this |ayer



The new way to train multi-layer NNss. ..

SESEL

Each layer can be trained to be an auto-
encoder (e.qg.,via reconstruction loss)

Basically, it is forced to learn good features that
describe what comes from the previous layer

10/30/1 . _
https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt
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Recent Trend (6): Learning to
Learn

-

Inputs and Outputs Losses

/19 Yanjun Qi / UVA CS



Machine (Deep) Learning in a Nutshell

Task:

1

Representation:

1

‘ Score Function:

Search/Optimization

1

Check / Validate
(Models, Parameters)
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/0

Learning to Learn ’

e What is Meta Learning / Learning to Learn?

o Go beyond train/test from same distribution.

o Task between train/test changes, so model has to “learn to learn”
e Datasets

Image recognition Mini-Imagenet dataset (Vinyals et al.’16)
Given 1 example of 5 classes: Classify new examples

s I
a) T b) 3 ‘ @ E
o | = =

@7@ M P =2 . .
M Reinforcement learning
"’“;. @ =|7F B ?—; Given a small amount of experience Solve a new task
é" g @ =5(x|n
N Y YEIRIEIEIE
Lake et al,
2013, 2015

Chelsea Finn, UC Berkeley How? learn to learn many other tasks fig. from Duan etal.’17

10/30/19 Yanjun Qi / UVA CS
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Learning to Learn
Model Based

— | = >

él

e Santoro et al. 16
e Duanetal. ’17

e Wangetal. ‘17

e Munkhdalai & Yu ‘17
e Mishraetal. ‘17

1 [ . :
10/30/19 Yanjun Qi / UVA CS

Metric Based

Koch 15
Vinyals et al. ‘16
Snell et al. ‘17
Shyam et al. ‘17

Losses
™ i

D ng.;r

(X3, Ys) (X ) (X,Y)

. Y2 Y
v + v
0, . 07 |. Or .
F ee e ( l
LIM(X;0741).Y)
T-1

(]
v
]
\ 0
—_—
R

Optimization Based

e Schmidhuber 87, '92
e Bengio et al. '90, ‘92

e Hochreiter et al. '01

o Li&Malk ‘16

e Andrychowicz et al. '16
e Ravi & Larochelle ‘17

e Finnetal 17

97
Adapt from From NIPS 2017 DL Trend Tutorial
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Recent Trend (7): Variants of
Input, e.g., Graphs, Trees,
Sets

Inputs and Outputs

/19 Yanjun Qi / UVA CS



Machine (Deep) Learning in a Nutshell

Task:

- Representation:

Score Function:

1

Search/Optimization

1

Check / Validate
(Models, Parameters)
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Geometric Deep Learning on Graphs and Manifolds,

NIPS 2017 Tutorial
Graph Nets (GNs) are a class of models that:

Use graphs as inputs and/or outputs and/or latent representation
Manipulate graph-structured representations

Reflect relational structure

Share model components across entities and relations

nl .
Examples include: Graph Véfv_ . Y Graph

Graph Neural Networks (Scarselli et al 07; 08) E
Recursive Neural Networks (Goller et al 96)
Pointer Networks (Vinyals et al 2015)

Graph Convolutional Networks (Bruna et al 2013; Duvenaud et al 15;
Henaff et al 15; Kipf & Welling 16; Defferrard et al 17)

Gated Graph Neural Networks (Li et al 15)
Interaction Networks (Battaglia et al 2016; Raposo et al 2017; )
Message Passing Networks (Gilmer et al. 2017)

-

10/30/19 Yanjun Qi / UVA CS 100
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Inductive Bias for Graphs

e Ideally want a model invariant to the order of nodes.

e23

el12

(W) — " X=(v1,v2,v3, e12, e13, e23)
‘\»
0 el13

Order Invariant
Model

el12 /
el13

@ — perm(X) = (v3, v1, v2, e13, e23, e12)

@ e23

10/30/19 Yanjun Qi / UVA CS

Arch

‘ﬁﬁw’

e |If we have a graph on N nodes, there are N! possible orderings of the nodes.

Y

Slides credits: Justin Gilmer

101
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Recent Trend (8):
Tasks in the form of Symbolic input/ outputs /
Program Induction

!

pr
Inputs and Outputs: Architectures: Losses:
e Discrete symbols, (e.g. e (Mostly) recurrent e Differentiable,
the program itself) e Sometimes including predicting discrete
e Program execution ConvNets as a visual program outputs or
traces front-end. code itself: softmax
e Program |I/O pairs cross entropy.
These can also be mixed e Not differentiable: RL

with perceptual data. Adapt from From NIPS 2017 DL Trend Tutorial



Machine (Deep) Learning in a Nutshell

10/30/19 Yanjun Qi / UVA CS

‘ Talsk:

Representation:

1

Score Function:

1

Search/Optimization

1

Check / Validate
(Models, Parameters)
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Neural Program Induction - Research Landscape

e Neural network is the program: 2+3
o Learning to Execute, Neural Turing Machine, Neural GPU, ﬂNetwork
Neural RAM, Neural Programmer-Interpreter, Neural Task
Programmer, Differentiable Forth Interpreter o
e Neural network generates source code : 2,325
o DeepCoder, RobustFill, Neural Inductive Logic Programming ﬂNGTWOFk
sum(a,b)

e Probabilistic programming with neural networks:
o TerpreT, Edward, Picture

10/30/19 Yanjun Qi / UVA CS 104

Adapt from From NIPS 2017 DL Trend Tutorial



Neural Turing Machines

External Input

External Output

Controller

/ ‘Blurry’ \

Write Heads

Read Heads

Neural Turing Machines, Graves et. al., arXiv:1410.5401

10/30/19 Yanjun Qi / UVA CS
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Task with Sequential Symbolic Form

* Words, letters, strings, ..
* Computer Programs, ...

* Sequence decision making, e.g., games, RL

while (xd++ = *S++);

olecthon NI
2 3! 2 s +
:ﬂ.|\ Q F L ®
.o a4 lee 4 4 - - - <
23 e.(131) 3% -(3$F) B9
N !
p, i
-
10/30/19 Yan (+e%)
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Recent Trend (9):
Generative Adversarial Networks (GAN)

Architectures: Losses



Machine (Deep) Learning in a Nutshell

‘ Talsk:

Representation:

1

Score Function:

1

Search/Optimization

1

Check / Validate
(Models, Parameters)
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MIT
Technology
Review

p- gy ly_ly-

- - -
a-F -F_--a-_:-_:-

Dueling Neural Networks
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Adversarial Nets Framework
D tries to make
D(G(z)) near 0,
D(x) tries to be G tries to make
near 1 D(G(z)) near 1

leferentlable
function D
T sampled from
data

T sampled from
model

Dlﬁerentlable
function G

Input noise z

O N N 7 e

(Goodfellow 2016)



Arch

Unsupervised cross-domain image generation -

Leanp / LeanG
’ -—— *

/ {ig’(f (x)

LconsT

1. Taigmen et al. “Unsupervised Cross-domain image generation”. In ICLR 2017.
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CycleGAN

Summer _ Winter

horse — zebra

Zhu et al. “Unpaired Image-to-lmage Translation using Cycle-Consistent Adversarial Networks”. In ICCV, 2017.

This paper captures special characteristics of one image collection and figures out
how these characteristics could be translated into the other image collection, all in
the absence of any paired training examples. CycleGANs method can also be applied

in variety of applications such as Collection Style Transfer, Object Transfiguration,
season transfer and photo enhancement.



Image Super-Resolution

bicubic SRResNet SRGAN original
(21 59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

10/30/19 Yanjun Qi / UVA CS 113

[Ledig et al. CVPR 2017]



https://arxiv.org/pdf/1609.04802.pdf

Label2Image

Input Ground truth L1 cGAN L1+ cGAN

10/30/19 Yanjun Qi / UVACS [Isola et al. CVPR 2017]



https://phillipi.github.io/pix2pix/

Edges2Image

Input Ground truth Ground truth

10/30/19 Yanjun Qi / UVACS [Isola et al. CVPR 2017]



https://phillipi.github.io/pix2pix/

Text2lmage

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
with white stigma round yellow stamen

10/30/19 Yanjun Wi/ UVA Lo 116

[Reed et al. ICML 2016]



https://arxiv.org/pdf/1605.05396.pdf

Progressive GAN

1024x1024

R. BR. - B
D Reals Reals .‘Reals

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND
VARIATION, ICLR 2018

10/30/19 Yanjun Qi / UVA CS 117




Recent Trend (10):
Deep Generative Models: Autoregressive Kind



Machine (Deep) Learning in a Nutshell

)

‘ Representation:

Score Function:

1

Search/Optimization

1

Check / Validate
(Models, Parameters)
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Generative models - Research Landscape

Latent variable models (VAE, DRAW)

Implicit (GAN, GMMN, Progressive GAN)

Transform (NICE, IAF, Real NVP)

Autoregressive (NADE, MADE, RIDE, PixelCNN, WaveNet)

UAI 2017 Tutorial on Deep Generative Models.
NIPS 2016 Tutorial on Generative Adversarial Networks

10/30/19 Yanjun Qi / UVA CS 120
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Autoregressive Models

N
P(z;0) = | | P(xn|zcn: 0)
n=1

e Each factor can be parametrized by 9 , which can be shared.

e The variables can be arbitrarily ordered and grouped, as long as
the ordering and grouping is consistent.

10/30/19 Yanjun Qi / UVA CS 121

Adapt from From NIPS 2017 DL Trend Tutorial



Recurrent versus Causal Convolutional Nets iAih‘

Deep RNN

@
?
i
4
&
!
3
!
-]

- The architecture is parallelizable
along the time dimension (during
training or scoring)

- Easy access to many states from
the past

10/30/19 Yanjun Qi / UVA CS 122

Adapt from From NIPS 2017 DL Trend Tutorial



Why Generative Models?

*Excellent test of ability to use high-
dimensional, complicated probability
distributions

*Simulate possible futures for planning or
simulated RL

* Missing data
* Semi-supervised learning

* Multi-modal outputs
*Realistic generation tasks

(Goodfellow 2016)



Recent Trend (11):
Deep Reinforcement Learning

10 Breakthrough
Technologies MIT

2017 Technology
hese technologies all have staying power. ReVI ew

They will affect the economy and our

politics, improve medicine, or influence our
culture. Some are unfolding now; others will take a
decade or more to develop. But you should know
about all of them right now.



Machine (Deep) Learning in a Nutshell
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Reinforcement Learning (RL)

* What’s Reinforcement Learning?
{Observation, Reward} {Actions}

e Agent interacts with an environment and learns by maximizing a scalar
reward signal

e No labels or any other supervision signal.
e Previously suffering from hand-craft states or representation.

10/30/19 Yanjun Qi / UVA CS

126
Adapt from Professor Qiang Yang of HK UST



Deep Reinforcement Learning

=

* Human AT

. / .
observation AEHN L S action
] P { )

e So what’s DEEP RL?

{Raw Observation, Reward} {Actions}

32 4x4 filters 256 hidden units Fully-connected linear

output layer
16 8x8 filters
4x84x84
H IZE 0
Stack of 4 previous ] Fully-connecte d layer
10/30/19 Yanjun Qi / UVA CS frames Convolutional layer Convolutional layer of rectified linear units 127

of rectified linear units

A‘EEE‘S%" from Professor Qiang Yang of HK UST



AlphaGO: Learning Pipeline

* Combine Supervised Learning (SL) and RL to learn the search
direction in Monte Carlo Tree Search

Rollout policy SL policy network RL policy network Value network
z
P P, P, Vs 2
R~
>
e
2
XX B%g B% 5
x

S
R 4
5 S 4
Sa ¥ 4
= & o
o
&
Human expert positions Self-play positions SIIVE I, DaV|d; et al- 2016

* SL policy Network
* Prior search probability or potential

* Rollout:
e combine with MCTS for quick simulation on leaf node

* Value Network:
 Build the Global feeling on the leaf node situation

Silver, David, et al. "Mastering the game of Go with deep neural
networks and tree search." Nature 529.7587 (2016): 484-489.
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AlphaGo {Fan, Lee, Master} x AlphaGo Zero:

supervised learning from human expert positions x from
scratch by self-play reinforcement learning (“tabula rasa”)
additional (auxialiary) input features x only the black and
white stones from the board as input features

separate policy and value networks X single neural network
tree search using also Monte Carlo rollouts x simpler tree

search using only the single neural network to both evaluate
positions and sample moves

(AlphaGo Lee) distributed machines + 48 tensor processing
units (TPUs) x single machines + 4 TPUs

(AlphaGo Lee) several months of training time x 72 h of
training time (outperforming AlphaGo Lee after 36 h)

Silver, David et al. (2017b). “Mastering the Game of Go without Human
Knowledge”. In: Nature 550.7676, pp. 354—359.
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5000 -
4000 -

Chess

Shogi

T

3000 -
2000 -
1000 -

T

T

—— AlphaZero
—— Stockfish

— AlphaZero
— Elmo

Thousands of Steps

10/30/19 Yanjun Qi / UVA CS

Go

—— AlphaZero
—— AlphaGo Zero
—— AlphaGo Lee

0 100 200 300 400 500 600 700
Thousands of Steps

Silver, David et al. (2017b). “Mastering the Game of Go without Human
Knowledge”. In: Nature 550.7676, pp. 354—359.

0 160 260 360 460 560 660 760 0 100 200 300 400 500 600 700
Thousands of Steps
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Recent Trend (12):
Robustness / Trustworthiness / Understand /
Verify / Test / Evade / Detect Bias / Protect DNN

Validation



Machine (Deep) Learning in a Nutshell
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1
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1
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1
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(Models, Parameters)
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Evade DNN, e.g. Adversarial Examples (AE)
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“panda” +  0.007 X [noise]

“gibbon”

Example from: lan J. Goodfellow, Jonathon
Shlens, Christian Szegedy. Explaining and Harnessing
Adversarial Examples. ICLR 2015.
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f(x) f(x)

Pandal! Gibbon class Gibbon!
gradient

Adversarial example

Francois Chollet - https://blog.keras.io/the-limitations-of-deep-learning.html



https://twitter.com/fchollet

Breaking CNNs

correct +distort ostrich correct | +distort ostrich

Take a correctly classified image (left image in both columns), and add a tiny distortion (middle) to fool the ConvNet with the
resulting image (right).

Intriguing properties of neural networks [Szegedy ICLR 2014]

Andrej Karpathy



http://arxiv.org/pdf/1312.6199v4.pdf

Breaking CNNs
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Deep Neural Networks are Easily Fooled: High Confidence Predictions for
Jia-bin Huang Unrecognizable Images [Nguyen et al. CVPR 2015]



http://arxiv.org/pdf/1412.1897.pdf

Cat-and-mouse game

Szegedy+ 2014]: first discover adversarial examples

(Goodfellow+ 2015]: Adversarial training (AT) against FGSM

[Papernot+ 2015]: defensive distillation
[Calini & Wagner 2016]: distillation is not secure
[Papernot+ 2017]: better distillation

(Carlini & Wagner 2017]: All detection strategies fail

[Madry+ 2017]: AT against PGD, informal argument about optimality

[Lu+ July 12 2017]: "NO Need to Worry about Adversarial Examples in Object Detection in
Autonomous Vehicles”

[Athalye & Sutskever July 17 2017]: break defense with AT on PGD with transformed examples

10/30/19 Yanjun Qi / UVA CS 137
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Bias in DNN: e.g. Men Also Like Shopping: Reducing Gender Bias
Amplification using Corpus-level Constraints, EMNLP 2017

COOKING COOKING COOKING COOKING
ROLE |VALUE ROLE |VALUE ROLE |VALUE ROLE ‘ ROLE |VALUE
AGENT | WOMAN AGENT | WOMAN AGENT | WOMAN AGENT MAN
FOOD PASTA FOOD FRUIT FOOD MEAT FOOD FOOD 2
HEAT STOVE HEAT @ HEAT STOVE HEAT STOVE HEAT STOVE
TOOL | SPATULA TOOL KNIFE TOOL | SPATULA TOOL | SPATULA TOOL | SPATULA
PLACE KITCHEN PLACE KITCHEN PLACE OUTSIDE PLACE KITCHEN PLACE KITCHEN

Figure 1: Five example images from the imSitu visual semantic role labeling (vSRL) dataset. Each im-
age is paired with a table describing a situation: the verb, cook ing, its semantic roles, i.e agent, and
noun values filling that role, i.e. woman. In the imSitu training set, 33% of cooking images have man

10/30/19 Yanjun Qi / UVA CS 138



Verify DNN, e.g. “Reluplex: An efficient SMT solver
for verifying deep neural networks.” International
Conference on Computer Aided Verification. 2017.

Provably Input Hidden Output
robust? layer Layer layer

Table 3: Local adversarial robustness tests. All times are in seconds.

Point 1 | SAT 135 SAT 239 SAT 24 UNSAT 609 UNSAT o7 | 1064
Point 2 | UNSAT 5880 UNSAT 1167 UNSAT 285 UNSAT 57 UNSAT 5)
Point 3 | UNSAT 863 UNSAT 436 UNSAT 99 UNSAT 53 UNSAT 1
Point 4 | SAT 2 SAT 977 SAT 1168 UNSAT 656 UNSAT 7
Point 5 | UNSAT 14560 UNSAT 4344 UNSAT 1331 UNSAT 221 UNSAT 6

6 =0.1 0 =0.075 0 = 0.05 0 = 0.025 6 =0.01 Total
Result Time Result Time Result Time Result Time Result Time | Time

7394
1452
2810
20462



Today Recap: Some Recent Trends

1. CNN / Residual / Dynamic parameter
2. RNN / Attention / Seq2Seq / BERT ...
3. Neural Architecture with explicit Memory

* 4. Learning to optimize / Learning DNN architectures

5. Autoencoder / layer-wise training

6. Learning to learn / meta-learning/ few-shots

7. DNN on graphs / trees / sets

8. NTM 4program induction / sequential decisions

9. Generative Adversarial Networks (GAN)

10. Deep Generative models, e.g., autoregressive

11. Deep reinforcement learning

12. Validate / Evade / Test / Understand / Verify DNNs

(Many more exciting trends not covered here!)
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