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Today

• Deep Learning  
• History 
• A Few Recent trends
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Early History
• In 1950 English mathematician Alan Turing wrote a landmark paper titled 

“Computing Machinery and Intelligence” that asked the question:  “Can 
machines think?”

• Further work came out of a 1956 workshop at Dartmouth sponsored by 
John McCarthy.  In the proposal for that workshop, he coined the phrase a 
“study of artificial intelligence”

• 1950s
• Samuel’s checker player : start of machine learning
• Selfridge’s Pandemonium

• 1952-1969:  Enthusiasm: Lots of work on neural networks

• 1970s-80s: Expert systems, Knowledge bases to add on rule-based 
inference, Decision Trees, Bayes Nets

• 1990s : CNN, RNN, …. 

• 2000s : SVM, Kernel machines, Structured learning, Graphical models, 
semi-supervised, matrix factorization, … 

11/5/19 Yanjun Qi / UVA CS 3
Adapted From Prof. Raymond J. Mooney’s slides



Deep Learning (CNN) in the 90’s 

• Prof. Yann LeCun invented Convolutional Neural  Networks (CNN)  in 1998 
• First NN successfully trained with many layers 
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Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.
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Deep Learning (RNN) in the 90’s 

• Prof. Schmidhuber invented "Long short-term memory” – Recurrent 
NN (LSTM-RNN) model in 1997
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Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term memory". Neural Computation. 9 (8): 1735–1780. 

Image Credits from Christopher Olah
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“Winter of Neural Networks” in ~2000s
• Non-convex

• Need a lot of tricks to play with
• How many layers ? 
• How many hidden units per layer ?  
• What topology among layers ? ……. 

• Hard to perform theoretical analysis

• Large labeled datasets are rare  
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Adapt from From NIPS 2017 DL Trend Tutorial  
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Why breakthrough ? 
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Deep Learning Deep Reinforcement Learning

Generative 
Adversarial 
Network (GAN)
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DNNs help us build more intelligent computers

• Perceive the world, 
• e.g., objective recognition, speech recognition, …

• Understand the world, 
• e.g., machine translation, text semantic understanding

• Interact with the world, 
• e.g., AlphaGo, AlphaZero, self-driving cars, …

• Being able to think / reason, 
• e.g., learn to code programs, learn to search deepNN, …

• Being able to imagine / to make analogy, 
• e.g., learn to draw with styles, ……
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Some Recent Trends

• 1. CNN / Residual / Dynamic parameter 
• 2. RNN / Attention / Seq2Seq / BERT …
• 3. Neural Architecture with explicit Memory 
• 4. Learning to optimize / Learning DNN architectures 
• 5. Autoencoder / layer-wise training
• 6. Learning to learn / meta-learning/ few-shots
• 7. DNN on graphs / trees / sets
• 8. NTM 4program induction / sequential decisions
• 9. Generative Adversarial Networks (GAN)
• 10. Deep Generative models, e.g., autoregressive
• 11. Deep reinforcement learning 
• 12. Validate / Evade / Test / Understand / Verify DNNs 
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https://qdata.github.io/deep2Read/
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New Network 
topology

New Losses

New Inputs

New Tasks

New Model Properties

https://qdata.github.io/deep2Read/


Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 
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●Tasks: 
● Discriminative prediction / Generative / Reinforce / Reasoning

●Formulate Input / Output: 
● Data representation

●Architecture Design: 
● Network Topology, Network Parameters

●Training / Searching / Learning 
● With new losses  
● With new optimization tricks
● New formulation of learning
● Scaling up with GPU, Scaling up with distributed optimization , e.g. 

Asynchronous SGD
●Validation / Trust / Test / Understand …

● Software 2.0 

10/30/19 Yanjun Qi / UVA CS 12

A nutshell of Variations in Deep NN: Five Aspects



Building Deep Neural Nets
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http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Today’s Survey: Trends since ~2011 
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Adapt from From NIPS 2017 DL Trend Tutorial  

Validation

Software 2.0 



Recent Trend (1): 
Convolutional Neural Networks

(aka CNNs and ConvNets)
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Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 
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● New Network Topology, 
Network Parameters



History of ConvNets

17

Gradient-based learning applied to 
document recognition [LeCun, Bottou, 
Bengio, Haffner]

ImageNet Classification with Deep 
Convolutional Neural Networks 
[Krizhevsky, Sutskever, Hinton, 2012]

1998 2012



Important Block: Convolutional Neural  Networks (CNN)

• Prof. Yann LeCun invented CNN  in 1998 
• First NN successfully trained with many layers 
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Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Adapt from From NIPS 2017 DL Trend Tutorial  



Locality and Translation Invariance 

• Locality: objects tend to have a local spatial support 
• Translation invariance: object appearance is independent of location 

• Can define these properties since an image lies on a grid/lattice 
• ConvNet machinery applicable to other data with such properties, e.g. audio/text 
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Adapt from From NIPS 2017 DL Trend Tutorial  

CNN models Locality and Translation Invariance 

Make fully-connected layer locally-connected and sharing weight
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Why CNN for Image?

Can the MLP network be simplified by 
considering the properties of images?

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

The most basic 
classifiers

Use 1st layer as module 
to build classifiers 

Use 2nd layer as 
module ……

[Zeiler, M. D., ECCV 2014]

Represented 
as pixels



Why CNN for Image

• (1) Locality: Some patterns are much smaller than the whole image

A neuron does not have to see the whole image 
to discover the pattern.

“beak” detector

Connecting to small region with less 
parameters

Dr. Hung-yi Lee’s CNN slides



Why CNN for Image

• (2) Translation invariance: The same patterns appear in different 
regions.

“upper-left 
beak” detector

“middle beak”
detector

They can use the same 
set of parameters.

Do almost the same thing

Dr. Hung-yi Lee’s CNN slides

𝑥⃗𝑠
𝑤𝑠

𝑤𝑠



Why CNN for Image

• (3) Subsampling the pixels will not change the object

subsampling

bird
bird

We can subsample the pixels to make image smaller

Less parameters for the network to process the image

Dr. Hung-yi Lee’s CNN slides



The whole CNN

Fully Connected 
Feedforward 

network

cat dog ……
Convolution

Max 
Pooling

Convolution

Max 
Pooling

Flatten

Can repeat 
many times

Dr. Hung-yi Lee’s CNN slides



The whole CNN

Convolution

Max 
Pooling

Convolution

Max 
Pooling

Flatten

Can repeat 
many times

Ø Some patterns are much 
smaller than the whole image

ØThe same patterns appear in 
different regions.

Ø Subsampling the pixels will 
not change the object

Property 1

Property 2

Property 3

Dr. Hung-yi Lee’s CNN slides



The whole CNN

Fully Connected 
Feedforward 

network

cat dog ……
Convolution

Max 
Pooling

Convolution

Max 
Pooling

Flatten

Can repeat 
many times

Dr. Hung-yi Lee’s CNN slides



CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

……

Those are the network 
parameters to be learned.

Matrix

Matrix

Each filter detects a small 
pattern (3 x 3). Property 1

Dr. Hung-yi Lee’s CNN slides

“detector 1”

“detector 2”

𝑤𝑠1

𝑤𝑠2



CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -1

stride=1

Dr. Hung-yi Lee’s CNN slides



CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -3

If stride=2

We set stride=1 below

Dr. Hung-yi Lee’s CNN slides



CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

Property 2

Dr. Hung-yi Lee’s CNN slides

“detector 1”



CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Do the same process for 
every filter

stride=1

4 x 4 image

Feature
Map

Dr. Hung-yi Lee’s CNN slides

“detector 2”



CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Do the same process for 
every filter

stride=1

4 x 4 image

Feature
Map

Dr. Hung-yi Lee’s CNN slides

“detector 2”



CNN – Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

You can do the same 
process for every filter

stride=1

4 x 4 image

Feature
Map

Dr. Hung-yi Lee’s CNN slides

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1



CNN – Colorful image (from matrix to tensor) 

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 -1 -1
-1 1 -1
-1 -1 1 Filter 1

-1 1 -1
-1 1 -1
-1 1 -1 Filter 2

1 -1 -1
-1 1 -1
-1 -1 1

1 -1 -1
-1 1 -1
-1 -1 1

-1 1 -1
-1 1 -1
-1 1 -1

-1 1 -1
-1 1 -1
-1 1 -1Colorful 

image (R, G, B)

Dr. Hung-yi Lee’s CNN slides



1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

image
convolution

-1 1 -1
-1 1 -1
-1 1 -1

1 -1 -1
-1 1 -1
-1 -1 1

1x

2x

…
…

36x

…
…

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

Convolution v.s. Fully Connected

Fully-
connected

Dr. Hung-yi Lee’s CNN slides

𝑤𝑠1 𝑤𝑠2



1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

image
convolution

-1 1 -1
-1 1 -1
-1 1 -1

1 -1 -1
-1 1 -1
-1 -1 1

1x

2x

…
…

36x

…
…

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

Convolution v.s. Fully Connected

Fully-
connected

When 2 filters, 36*2=72 parameters!

When with 2 
filters, 3*3*2=18 
parameters!



1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1
1:

2:

3:

…

7:

8:

9:

…

13:

14:

15:

…

Only connect to 
9 input, not fully 
connected

4:

10:

16:

1
0
0
0

0
1
0
0

0
0
1
1

3

Less parameters!

(1) Locality: 

Dr. Hung-yi Lee’s CNN slides

Each filter has 
3*3=9 parameters!



1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

1:

2:

3:

…

7:

8:

9:

…

13:

14:

15:

…

4:

10:

16:

1
0
0
0

0
1
0
0

0
0
1
1

3

-1

Shared weights 
(same 3*3 
parameters)

6 x 6 image

Less parameters!

Even less parameters! 
(weight sharing)

(2) Translation invariance: 

Dr. Hung-yi Lee’s CNN slides



The whole CNN

Fully Connected 
Feedforward 

network

cat dog ……
Convolutio

n

Max 
Pooling

Convolutio
n

Max 
Pooling

Flatten

Can repeat 
many times

Dr. Hung-yi Lee’s CNN slides

softmax



CNN – Max Pooling

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

(3) Subsampling: 

Dr. Hung-yi Lee’s CNN slides



CNN – Max Pooling

3

0

1

3

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

-1 1

0 3

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

(3) Subsampling: 

Dr. Hung-yi Lee’s CNN slides



CNN – Max Pooling

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

3 0

13

-1 1

30

2 x 2 image

Each filter 
is a channel

New image 
but smaller

Conv

Max
Pooling

(3) Subsampling: 

Dr. Hung-yi Lee’s CNN slides



CNN – Max Pooling

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

3 0

13

-1 1

30

2 x 2 image

Each filter 
is a channel

New image 
but smaller

Conv

Max
Pooling

(3) Subsampling: 

Dr. Hung-yi Lee’s CNN slides



The whole CNN

Convolutio
n

Max 
Pooling

Convolutio
n

Max 
Pooling

Can repeat 
many timesA new image

The number of the channel 
is the number of filters

Smaller than the original image

3 0

13
-1 1

30

Dr. Hung-yi Lee’s CNN slides



The whole CNN

Fully Connected 
Feedforward 

network

cat dog …… Convolutio
n

Max 
Pooling

Convolutio
n

Max 
Pooling

Flatten

A new 
image

A new 
image

Dr. Hung-yi Lee’s CNN slides



Flatten

3 0

13

-1 1

30
Flatten

3

0

1

3

-1

1

0

3

Fully Connected 
Feedforward 

network

Dr. Hung-yi Lee’s CNN slides

softmax



network structure and input format 
(vector -> 3-D tensor)CNN in Keras

Convolution

Max 
Pooling

Convolution

Max 
Pooling

input
1 x 28 x 28

25 x 26 x 
26

25 x 13 x 
13

50 x 11 x 
11

50 x 5 x 5

How many parameters 
for each filter?

How many parameters 
for each filter?

9

225

Dr. Hung-yi Lee’s CNN slides



Only modified the network structure and 
input format (vector -> 3-D tensor)CNN in Keras

Convolutio
n

Max 
Pooling

Convolutio
n

Max 
Pooling

input
1 x 28 x 28

25 x 26 x 
26

25 x 13 x 
13

50 x 11 x 
11

50 x 5 x 5
Flatten

1250

Fully Connected 
Feedforward 

network

output

Dr. Hung-yi Lee’s CNN slides



More Application: Playing Go

Network (19 x 19 
positions)

Next move

19 x 19 vector

Black: 1
white: -1
none: 0

19 x 19 vector

Fully-connected feedforward 
network can be used

But CNN performs much better.

19 x 19 
matrix (image)

Dr. Hung-yi Lee’s CNN slides



More Application: Speech

Time

Fr
eq

ue
nc

y

Spectrogram

CNN

Image

The filters move in the 
frequency direction.

Dr. Hung-yi Lee’s CNN slides



Convolutional Neural Networks

52
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Residual Trick: 
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Adapt from From NIPS 2017 DL Trend Tutorial  

Yanjun Qi / UVA CS 
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• Diet Networks:  Thin Parameters for Fat Genomics, ICLR 2017
• Dynamic Filter Networks, NIPS 2016
• Hyper Networks, ICLR 2017
• Optimal Architectures in a Solvable Model of Deep Networks, NIPS16
• AdaNet: Adaptive Structural Learning of Artificial Neural Networks, ICML17
• SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction 

and Model Parallelization, ICML17
• Image Question Answering using Convolutional Neural Network with Dynamic 

Parameter , CVPR 2016
• Many others.. 
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Adaptive / Dynamic Trick: 



Recent Trend (2): 
Recurrent Neural Networks

59



Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 

10/30/19 Yanjun Qi / UVA CS 60

● New Network Topology, 
Network Parameters



• Prof. Schmidhuber invented "Long short-term memory” – Recurrent 
NN (LSTM-RNN) model in 1997
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Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term memory". Neural 
Computation. 9 (8): 1735–1780. 

Image Credits from Christopher 

Important Block: Recurrent Neural Networks (RNN)



• Prof. Schmidhuber invented "Long short-term memory” – Recurrent 
NN (LSTM-RNN) model in 1997
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Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term memory". Neural 
Computation. 9 (8): 1735–1780. 

Image Credits from Christopher 

Important Block: Recurrent Neural Networks (RNN)



RNN models dynamic temporal dependency 

63

Image credit : wildML

• Make fully-connected layer model each unit recurrently
• Units form a directed chain graph along a sequence 
• Each unit uses recent history and current input in modeling

LSTM for Machine Translation 
(German to English) 



Recurrent Neural Networks (RNNs)

64

Traditional “Feed Forward” 
Neural Network Recurrent Neural Network

input 

hidden

output

predict a vector at 
each timestep

input 

hidden

output

http://cs231n.stanford.edu/slides/



Standard “Feed-Forward” Neural Network
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Recurrent Neural Networks (RNNs)

66

RNNs can handle

http://cs231n.stanford.edu/slides/



Recurrent Neural Networks (RNNs)

67

RNNs can handle

http://cs231n.stanford.edu/slides/



In machine translation, the input is a sequence of words 
in source language, and the output is a sequence of 
words in target language. 

Encoder-decoder architecture for machine translation 

Encoder: An RNN to encode the 
input sentence into a hidden 
state (feature)

Decoder: An RNN with 
the hidden state of the 
sentence in source 
language as the input 
and output the 
translated sentence

Seq2Seq for Machine Translation

10/30/19 Yanjun Qi / UVA CS 68
Adapt from Professor Qiang Yang of HK UST 
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Adapt from From NIPS 2017 DL Trend Tutorial  

Attention Trick: 



C1 is a weighted sum of the hidden encodings.

Attention for output timestep 1

The attention module gives us a weight for each input.

Based: Dr. Yangqiu Song’s slides



Transformer: Exploiting Self Attentions

● A Google Brain model.
● Variable-length input
● Fixed-length output (but typically extended 

to a variable-length output)
● No recurrence
● Surprisingly not patented.

● Uses 3 kinds of attention
● Encoder self-attention.
● Decoder self-attention.
● Encoder-decoder multi-head attention.

Based: Dr. Yangqiu Song’s slides



ELMo: Embeddings from Language Models
Pre-trained biLSTM for contextual embedding

BERT: Bidirectional Encoder 
Representations from 
Transformers
Pre-trained transformer encoder 
for sentence embedding

Notable pre-trained NLP models

Based: Dr. Yangqiu Song’s slides



Different tasks use the OpenAI transformer in different 
ways.

Open AI's GPT-2 is a really large transformer.

Based: Dr. Yangqiu Song’s slides



Recent Trend (3): 
Neural Architectures with Memory

74

memory and multi-hop 
reasoning to perform AI 

tasks better



Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 

10/30/19 Yanjun Qi / UVA CS 75

● New Network Topology, 
Network Parameters



e.g. for Story Comprehension

Joe went to the kitchen. Fred went to the kitchen. Joe 
picked up the milk. Joe travelled to his office. Joe left the 
milk. Joe went to the bathroom. 

10/30/19 Yanjun Qi / UVA CS 76

Q1 : Where is Joe? 

Q2 : Where is the milk now?

Q3 : Where was Joe before the office?

Questions from 
Joe’s angry mother: 



Need external explicit memory 
for long-range reasoning 

Deeper AI tasks require explicit memory and 
multi-hop reasoning over it

• RNNs have short memory
• Cannot increase memory without increasing number 

of parameters
• Need for compartmentalized memory
• Read/Write should be asynchronous
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End-To-End Memory Networks, 
Sukhbaatar et. al., NIPS 2015

Generate 
memories

Transform
Query

Generate 
outputs

Score 
memories

Make 
averaged 
output

Response



Multi-hop 
MemN2N

10/30/19 Yanjun Qi / UVA CS 79

uk+1 = uk + ok

Hop 1

Hop 2

Hop 3

Different 
Memories and 
Outputs for 
each Hop

End-To-End Memory Networks, Sukhbaatar et. al., NIPS 2015



Neural Architectures with Memory
• Antoine Bordes, Y-Lan Boureau, Jason Weston, Learning End-to-End 

Goal-Oriented Dialog, ICLR 2017
• Karol Kurach, Marcin Andrychowicz & Ilya Sutskever Neural Random-

Access Machines, ICLR, 2016
• Emilio Parisotto & Ruslan Salakhutdinov Neural Map: Structured Memory 

for Deep Reinforcement Learning, ArXiv, 2017
• Oriol Vinyals,Meire Fortunato, Navdeep Jaitly Pointer Networks, ArXiv, 

2017
• Jack W Rae et al., Scaling Memory-Augmented Neural Networks with 

Sparse Reads and Writes, ArXiv 2016
• Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, Honglak Lee, 

Control of Memory, Active Perception, and Action in Minecraft, ICML 
2016

• Wojciech Zaremba, Ilya Sutskever, Reinforcement Learning Neural Turing 
Machines, ArXiv 2016

10/30/19 Yanjun Qi / UVA CS 80



10/30/19 Yanjun Qi / UVA CS 81

Adapt from From NIPS 2017 DL Trend Tutorial  



Recent Trend (4): 
Learning to Optimize / Learning to Search DNN 
architecture 

82



Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 
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Neural Architecture Search with Reinforcement Learning, ICLR17

84
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Neural Optimizer 
Search with 
Reinforcement 
Learning, 
ICML17

- e.g. hyperpara
search 



Recent Trend (5): Layer-wise 
pretraining / Auto-Encoder 
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Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 
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●Training / Searching / Learning 
●With new losses  
●With new optimization tips
●New formulation of learning
●Scaling up with GPU, Scaling 
up with distributed 
optimization , e.g. 
Asynchronous SGD



Recap: “Block View”

x

1st 

hidden layer
2nd

hidden layer Output layer

88

*
W1

*
W2

*
W3z1 z2 z3h1 h2

Loss Module

“Softmax” 

E (ŷ,y)
ŷ



an auto-encoder-decoder is trained to reproduce the input
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Reconstruction Loss: force the ‘hidden layer’ units to become 
good / reliable feature detectors

https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt

𝑥⃗

'⃗𝑥

ℎ | '⃗𝑥- 𝑥⃗|
Minimize diff



The new way to train multi-layer NNs…
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https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt



The new way to train multi-layer NNs…
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Train this layer first

https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt



The new way to train multi-layer NNs…
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Train this layer first

then this layer

then this layer
then this layer

finally this layer



The new way to train multi-layer NNs…

10/30/19 Yanjun Qi / UVA CS 93

Each layer can be trained to be an auto-
encoder (e.g.,via reconstruction loss)

Basically, it is forced to learn good features that 
describe what comes from the previous layer

https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt



Recent Trend (6): Learning to 
Learn 
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Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 
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Adapt from From NIPS 2017 DL Trend Tutorial  
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Adapt from From NIPS 2017 DL Trend Tutorial  



Recent Trend (7): Variants of 
Input, e.g., Graphs, Trees, 

Sets 
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Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 
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Adapt from From NIPS 2017 DL Trend Tutorial  
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Adapt from From NIPS 2017 DL Trend Tutorial  



Recent Trend (8): 
Tasks in the form of Symbolic input/ outputs / 

Program Induction 

102

Adapt from From NIPS 2017 DL Trend Tutorial  



Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 
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Adapt from From NIPS 2017 DL Trend Tutorial  



Neural Turing Machines
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Controller

External Input External Output

Read Heads

Memory

Neural Turing Machines, Graves et. al., arXiv:1410.5401   

‘Blurry’

Write Heads



Task with Sequential Symbolic Form 

• Words, letters, strings, ..
• Computer Programs , …
• Sequence decision making, e.g., games, RL 
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Recent Trend (9): 
Generative Adversarial Networks (GAN)

107



Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 
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109



Adversarial Nets Framework
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CycleGAN
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This paper captures special characteristics of one image collection and figures out 
how these characteristics could be translated into the other image collection, all in 
the absence of any paired training examples. CycleGANs method can also be applied 
in variety of applications such as Collection Style Transfer, Object Transfiguration, 
season transfer and photo enhancement.



Image Super-Resolution

• Conditional on low-resolution input image

10/30/19 Yanjun Qi / UVA CS 113
[Ledig et al. CVPR 2017]

https://arxiv.org/pdf/1609.04802.pdf


Label2Image

10/30/19 Yanjun Qi / UVA CS 114[Isola et al. CVPR 2017]

https://phillipi.github.io/pix2pix/


Edges2Image

10/30/19 Yanjun Qi / UVA CS 115[Isola et al. CVPR 2017]

https://phillipi.github.io/pix2pix/


Text2Image
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[Reed et al. ICML 2016]

https://arxiv.org/pdf/1605.05396.pdf


Progressive GAN
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PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND 
VARIATION, ICLR 2018



Recent Trend (10): 
Deep Generative Models: Autoregressive Kind

118



Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 
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Adapt from From NIPS 2017 DL Trend Tutorial  
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Adapt from From NIPS 2017 DL Trend Tutorial  
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Adapt from From NIPS 2017 DL Trend Tutorial  



Why Generative Models?

•Excellent test of ability to use high-
dimensional, complicated probability 
distributions

•Simulate possible futures for planning or 
simulated RL

•Missing data
• Semi-supervised learning

•Multi-modal outputs
•Realistic generation tasks

10/30/19 Yanjun Qi / UVA CS 123(Goodfellow 2016)



Recent Trend (11): 
Deep Reinforcement Learning

124



Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 
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Reinforcement Learning (RL)

• What’s Reinforcement Learning?
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Environment

Agent

{Observation, Reward} {Actions}

• Agent interacts with an environment and learns by maximizing a scalar 
reward signal

• No labels or any other supervision signal.
• Previously suffering from hand-craft states or representation.

Adapt from Professor Qiang Yang of HK UST 



Deep Reinforcement Learning
• Human

10/30/19 Yanjun Qi / UVA CS 127

• So what’s DEEP RL?
Environment

{Actions}{Raw Observation, Reward}

Adapt from Professor Qiang Yang of HK UST 



AlphaGO: Learning Pipeline
• Combine Supervised Learning (SL) and RL to learn the search 

direction in Monte Carlo Tree Search

• SL policy Network
• Prior search probability or potential

• Rollout: 
• combine with MCTS for quick simulation on leaf node 

• Value Network:
• Build the Global feeling on the leaf node situation
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Silver, David, et al. 2016.

Silver, David, et al. "Mastering the game of Go with deep neural 

networks and tree search." Nature 529.7587 (2016): 484-489.



10/30/19 Yanjun Qi / UVA CS 129Silver, David et al. (2017b). “Mastering the Game of Go without Human 

Knowledge”. In: Nature 550.7676, pp. 354–359.
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Knowledge”. In: Nature 550.7676, pp. 354–359.



Recent Trend (12): 
Robustness / Trustworthiness / Understand / 
Verify /  Test / Evade / Detect Bias / Protect  DNN

131Validation



Task:

Machine (Deep) Learning in a Nutshell

Representation:

Score Function:  

Search/Optimization 

Check / Validate 
(Models, Parameters) 
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0.007 × [𝑛𝑜𝑖𝑠𝑒]+ =“panda” “gibbon”

Example from: Ian J. Goodfellow, Jonathon 
Shlens, Christian Szegedy. Explaining and Harnessing 
Adversarial Examples. ICLR 2015.

Evade DNN, e.g. Adversarial Examples (AE)



Francois Chollet - https://blog.keras.io/the-limitations-of-deep-learning.html

https://twitter.com/fchollet


Breaking CNNs

Intriguing properties of neural networks [Szegedy ICLR 2014]Andrej Karpathy

http://arxiv.org/pdf/1312.6199v4.pdf


Breaking CNNs

Deep Neural Networks are Easily Fooled: High Confidence Predictions for  
Unrecognizable Images [Nguyen et al. CVPR 2015]Jia-bin Huang

http://arxiv.org/pdf/1412.1897.pdf
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Bias in DNN: e.g. Men Also Like Shopping: Reducing Gender Bias 
Amplification using Corpus-level Constraints, EMNLP 2017
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Verify DNN, e.g. “Reluplex: An efficient SMT solver 
for verifying deep neural networks.” International 
Conference on Computer Aided Verification. 2017.
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Provably 
robust?



Today Recap: Some Recent Trends

• 1. CNN / Residual / Dynamic parameter 
• 2. RNN / Attention / Seq2Seq / BERT …
• 3. Neural Architecture with explicit Memory 
• 4. Learning to optimize / Learning DNN architectures 
• 5. Autoencoder / layer-wise training
• 6. Learning to learn / meta-learning/ few-shots
• 7. DNN on graphs / trees / sets
• 8. NTM 4program induction / sequential decisions
• 9. Generative Adversarial Networks (GAN)
• 10. Deep Generative models, e.g., autoregressive
• 11. Deep reinforcement learning 
• 12. Validate / Evade / Test / Understand / Verify DNNs

• (Many more exciting trends not covered here!)
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New Network 
topology

New Losses

New Inputs

New Tasks

New Model Properties
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