
Scribe Note: Neural Network-based Graph

Embedding for Cross-Platform Binary Code

Similarity Detection[2]

Presenter: Faizan Ahmad, Scribe: Ji Gao

4/5/2019

1 Research Question

• Research question: Cross-platform binary code similarity detection.

• Previous work: Graph matching based algorithm. Can be slow, inaccu-
rate, and hard to scale to other tasks.

• Method: Use deep graph models to generate embedding for the graph.
In addition, use Siamese network to learn the difference.

2 Overview Figure

3 Model

• Problem: Generate an embdding for the Attributed Control Flow Graph(ACFG).

1

• Structure2Vec model:

µ(t+1)
v = F(xv,

∑
u∈N(v)

µ(t)
u),∀v ∈ V (1)

F is a nonlinear transformation function.

• This paper:

µ(t+1)
v = tanh(W1xv + σ(

∑
u∈N(v)

µ(t)
u)) (2)

Where σ is a n layer Fully connected neural network.

4 Siamese Learning

• Idea: learn how to generate embeddings by matching the generated em-
beddings of two similar inputs in training.

• Use cosine similarity as the importance measure.

cos(φ(g), φ(g′)) =
< φ(g), φ(g′) >

||φ(g)|| · ||φ(g′)||
(3)

5 Pre-Training:

• Learn on a general default task first: whether two binary functions are
compiled from the same source code.

• Fine-tuning on specific tasks: Add additional data with specific task labels
(i.e., A pair of graphs should be similar) into the data. Sample 50 times
more often of the new data

2

6 Evaluation

• Baselines:

– Bipartite Graph Matching(BGM): Match the graphs directly using
Bipartite Graph Matching algorithms.

– Codebook-based Graph Embedding (Genius)[1]: Previous graph em-
bedding method.

• Experiments:

– Task 1: Compile OpenSSL on 3 different architectures, get 129,365
ACFGs.

– Task 2: Large scale data with with 33,045 firmware images.

– Task 3: vulnerable functions obtained from the vulnerability dataset

– Task 4: Efficiency evaluation with different size of ACFGs.

• Result:

– ROC curve:

ROC curve shows Gemini outperforms baselines.

– Efficiency: It’s faster than Genius[1].

3

– Hyperparameters:

∗ Adding number of layers of MLP in the model doesn’t help much.

∗ When T=5(Number of stacked embedding layers), the model
gets best performance.

References

[1] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and
Heng Yin. Scalable graph-based bug search for firmware images. In Pro-

4

ceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 480–491. ACM, 2016.

[2] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song.
Neural network-based graph embedding for cross-platform binary code sim-
ilarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 363–376. ACM, 2017.

5

