
2019sp-cs-8501-Deep2Read Scribe Notes:

FastGCN: Fast Learning with Graph

Convolutional Networks via Importance Sampling

Scribe: Arshdeep Sekhon

June 1, 2019

1 Motivation

The Problem: Graph Convolutional Network requires using the entire dataset
in a transductive setting to compute loss function. This is because the graph
representation computation is not independent for the vertices: all need to be
calculated together with neighborhood information aggregation. This incurs
huge memory (requires storage of entire data in memory) and time cost, wors-
ened by the recursive layer/cycle computations.

This Paper: The main point is to convert the non-independent computation
for each vertex embedding into integrals of an embedding function on vertices
iid sampled from a probability distribution. This can be converted into a monte
carlo estimation of a loss function summed over iid observations. This sampling
based loss formulation enables SGD for optimization over batches of data.

2 Method

Assume there is a (possibly infinite) graph G′ with the vertex set V ′ associated
with a probability space (V ′, F, P ), such that for the given graph G, it is an
induced subgraph of G′ and its vertices are iid samples of V ′ according to the
probability measure P . All vertices share the same probability measure P that
defines a sampling distribution. A regular GCN:

H̃(l+1) = ÂH(l)W (l), H(l+1) = σ(H̃(l+1)), l = 0, . . . ,M−1, L =
1

n

n∑
i=1

g(H(M)(i, :)).

(1)
M denotes the number of cycles or layers. This paper:

1



Graph	convolution	view Integral	transform	view

batch

H(2)

H(1)

H(0)

h(2)(v)

h(1)(v)

h(0)(v)

Figure 1: Two views of GCN. (a) graph convolution view (b) integral transform
view

h̃(l+1)(v) =

∫
Â(v, u)h(l)(u)W (l) dP (u), h(l+1)(v) = σ(h̃(l+1)(v)), l = 0, . . . ,M − 1,

(2)

L = Ev∼P [g(h(M)(v))] =

∫
g(h(M)(v)) dP (v). (3)

P (u) is the sampling probability for the vertices. To reduce variance of the
Monte Carlo Estimator, use importance sampling P (u) = q(u) based on the
degree distribution, instead of uniform distribution:

q(u) = ‖Â(:, u)‖2/
∑
u′∈V

‖Â(:, u′)‖2, u ∈ V

2



2.1 The batched algorithm

Algorithm 1 FastGCN batched training (one epoch), improved version

1: For each vertex u, compute sampling probability q(u) ∝ ‖Â(:, u)‖2
2: for each batch do
3: For each layer l, sample tl vertices u

(l)
1 , . . . , u

(l)
tl

according to distribution
q

4: for each layer l do . Compute batch gradient ∇Lbatch

5: If v is sampled in the next layer,

∇H̃(l+1)(v, :)← 1

tl

tl∑
j=1

Â(v, u
(l)
j )

q(u
(l)
j )

∇
{
H(l)(u

(l)
j , :)W (l)

}
6: end for
7: W ←W − η∇Lbatch . SGD step
8: end for

GraphSAGE authors propose restricting the immediate neighborhood size for
each layer to reduce computation and memory. In the worst case, the size of the
expanded neighborhood is the product of the tl’s. On the other hand, FastGCN
samples vertices - the total number of involved vertices is at most the sum of
the tl’s.

3 Results

Cora Pubmed Reddit
10-3

10-2

10-1

100

T
im

e 
(s

ec
on

ds
)

FastGCN
GraphSAGE
GCN

Micro F1 Score
Cora Pubmed Reddit

FastGCN 0.850 0.880 0.937
GraphSAGE-GCN 0.829 0.849 0.923
GraphSAGE-mean 0.822 0.888 0.946

GCN (batched) 0.851 0.867 0.930
GCN (original) 0.865 0.875 NA

Figure 2: Per-batch training time in seconds (left) and prediction accuracy
(right).

4 Conclusion

This paper presents FastGCN, a method to convert previous GCN loss into a
sampling of vertices based loss formulation. This allows batched and inductive
setting for GCN, reducing time cost.

3


	Motivation
	Method
	The batched algorithm

	Results
	Conclusion

