2019sp-cs-8501-Deep2Read Scribe Notes: Spherical CNNs

Scribe: Arshdeep Sekhon

June 1, 2019

1 Motivation

Need for models that can analyze spherical images (for example, drones, robots, sensors, etc.). 2D CNNs/translational convolution don't work because any planar projection of a spherical signal will result in distortions. Spherical CNNs introduces spherical convolution that is rotation invariant for spherical images.

2 Key Challenges

- The convolution is on S^2 sphere, no perfectly symmetrical grids like pixel grids in images for the sphere exist: How to define rotation by a pixel?
- computational efficiency: SO(3) is a three-dimensional manifold, so a naive implementation of SO(3) correlation is $O(n^6)$.

3 Background

The Unit Sphere S^2 : The set of points $x \in \mathbb{R}^3$ with unit norm. It is a two-dimensional manifold, which can be parameterized by spherical coordinates α, β .

Spherical Filters: $f: S^2 \to R^K$, where K is the number of channels.

Rotations: Any orientation can be defined by 3 elemental rotations. The set of rotations in three dimensions is called SO(3), the "special orthogonal group". parameterized by ZYZ-Euler angles.

Rotating a point on a sphere: If we represent points on the sphere as 3D unit vectors x, we can perform a rotation using the matrix-vector product Rx. The rotation group SO(3) is a three-dimensional manifold. Rotation has three degrees of freedom : $R(\alpha; \beta; \gamma) = Z(\alpha)Y(\beta)Z(\gamma) \in SO(3)$

4 Correlation on the sphere and rotation group

Any rotation can be defined By analogy with 2D planar CNNs:

$$f \star \psi(x) = \int f(y)\psi(x-y)dy \tag{1}$$

Define translation : $T_x^{-1}(y) = x - y$

$$f \star \psi(x) = \int f(y)\psi(T_x^{-1}(y))dy$$
(2)

Extending to rotations:

For first Layer:

$$f \star \psi(x) = \int_{S^2} f(y)\psi(R_x^{-1}(y))dy$$
(3)

After the first layer defined on SO(3):

$$f \star \psi(R) = \int_{SO(3)} f(Q)\psi(R^{-1}(Q))dQ$$
 (4)

where 3d rotation is defined by: $R_x(t) = R_x \dot{t}$

Spherical Rotation is equivariant to rotation For continuous functions f and ψ : If rotation operator is defined as: $[L_R f](x) = f(R^{-1}x)$

$$[L_R f] \star \psi = L_R [f \star \psi] \tag{5}$$

5 Results

Equivariance Error: Equivariance error introduced because of discretization of f and ψ . Equivariance Error Δ :

$$\Delta = \frac{1}{n} \sum_{i=1}^{n} \frac{std(L_{Ri}\phi(f_i) - \phi(L_{Ri}f_i))}{std(\phi(f_i))} \tag{6}$$

• the approximation error grows with the resolution and the number of layers

Rotated MNIST on sphere

- MNIST dataset projected on the sphere
- Version 1(NR): each digit is projected on the northern hemisphere
- Version 2(R): each projected digit is additionally randomly rotated.
- trained each model on the non rotated (NR) and the rotated (R) training set and evaluated it on the non-rotated and rotated test set.
- When trained on NR and tested on R, the spherical CNN shows a slight decrease in performance compared to when trained and tested on Rotated, but still performs very well.

	NR / NR	R / R	NR / R
planar	0.98	0.23	0.11
spherical	0.96	0.95	0.94

Rotated MNIST Results

Method	Author	RMSE	S^2 CNN	Layer	Bandwidth	Features
MLP / random CM	(a)	5.96		Input		5
LGIKA(RF)	(b)	10.82		ResBlock	10	20
RBF kernels / random CM	(a)	11.40		ResBlock	8	40
RBF kernels / sorted CM	(a)	12.59		ResBlock	6	60
MLP / sorted CM	(a)	16.06		ResBlock	4	80
Ours		8.47		ResBlock	2	160
			DeepSet	Layer	Input/Hidden	
				ϕ (MLP)	160/150	
				ψ (MLP)	100/50	

 $\rm QM7\ task\ results$

Prediction of Atomization Energies from Molecular Geometry

- $\bullet~{\rm QM7}$ task
- the atomization energy of molecules to be predicted from geometry and charges