Scribe Note: Maximum-Likelihood Augmented Discrete Generative Adversarial Networks

Presenter: Yevgeny Tkach, Scribe: Ji Gao

June 1, 2019

1 Research Question

Research question: Discrete generation on text with GAN. Difficulties:

• Hard to define a differential loss function on the generated discrete text sequence.

2 Method Overview

- Overview:
 - Use importance sampling to produce a differential continuous loss on the generator
 - In addition to the previous technique, use multiple tricks, including Monte Carlo Tree Search, to further improve the performance.

3 Policy gradient

- Setting: RNN generator that can produce text sequences $X_t = \{x_{t1}, x_{t2}...x_{tm}\}$. Let $G(z_t; \theta) = \mathbb{P}(X = X_t : \{x_{t1}, x_{t2}...x_{tm}\})$ represents the generator.
- **Problem:** x_i after softmax is a single index, can't back-propagate to the RNN model.
- Reinforcement Learning:
 - Use RL to train the RNN model.
 - Treat the prediction from discriminator D as the reward r.
 - Use r to update the parameter θ in G
- Policy Gradient

- Suppose in total t trails, each time a sample X_t is generated, and D gives reward $r(x_t)$, we have:

$$\nabla L_{G}(\theta) = \nabla_{\theta} \mathbb{E}_{t}[r(X_{t})]$$

$$= \nabla_{\theta} \sum_{t} \mathbb{P}(X = X_{t})r(X_{t})$$

$$= \sum_{t} \nabla_{\theta} \mathbb{P}(X = X_{t})r(X_{t})$$

$$= \sum_{t} \mathbb{P}(X = X_{t})\nabla_{\theta} \log \mathbb{P}(X = X_{t})r(X_{t})$$

$$= \mathbb{E}_{t}[\nabla_{\theta} \log \mathbb{P}(X = X_{t})r(X_{t})]$$

$$= \mathbb{E}_{t}[\nabla_{\theta} \log G(z_{t}; \theta)r(X_{t})]$$
(1)

- Following equation 1, the gradient on the model parameter can be estimated using the reward over samples.
- In real practise to reduce variance, people use $\sum_{t} (\frac{r_t}{\sum_{t} r_t} b)$ instead of using $\sum_{t} r_t$ directly, where b is a scalar "baseline". In the paper, they varies b from 0 to 1.
- Similar technique is also used in SeqGAN[1] and many other discrete generation papers.

4 Importance Sampling

- Importance sampling: Estimating properties of a particular distribution, while only having samples generated from a different distribution than the distribution of interest.
- In GAN, suppose $p_d(X)$ is the distribution of real data. $p_{\theta}(X)$ is the distribution of generator. The optimal D will have the property $D(X) = \frac{p_d}{p_d + p_{\theta}}$.
- Therefore, $p_d = \frac{D(X)}{1 D(X)} p_\theta$.
- Let $r_D(X) = \frac{D(X)}{1-D(X)}$. Keep an older copy of p_θ as p' whose parameter is θ' . Then define $q(X) = \frac{r_D(X)}{Z(\theta')}p'(X)$, q(X) is a "fixed" distribution that approximates the data distribution disregard the moving of $p_\theta(X)$. $Z(\theta')$ is a normalization term.

• Define the loss

$$L_{G}(\theta) = \text{KL}(q(X)||p_{\theta}(X))$$

$$= \mathbb{E}_{q(X)}[\log p_{\theta}(X)] - H(q(X))$$

$$= \mathbb{E}_{p'(X)}[\frac{q_{\theta}(X)}{p'(X)}\log p_{\theta}(X)] - H(q(X))$$

$$\approx \frac{1}{Z(\theta')}\mathbb{E}_{p_{\theta}(X)}[r_{D}(X)\log p_{\theta}(X)] - H(q(X))$$
(2)

H(q(X)) and $Z(\theta')$ are not relevant with p_{θ} .

- The loss used in iteration becomes $\mathbb{E}_{p_{\theta}(X)}[r_D(X)\log p_{\theta}(X)]$
- Exactly the same form with policy gradient, if reward $r = \frac{D(X)}{1 D(X)}$

Algorithm of MaliGAN-Basic 5

Algorithm 1 MaliGAN

Require: A generator p with parameters θ .

A discriminator D(x) with parameters θ_d .

A baseline b.

1: for number of training iterations do

for k steps do

- 2: 3: 4: Sample a minibatch of samples $\{\mathbf{x}_i\}_{i=1}^m$ from p_{θ} . Sample a minibatch of samples $\{\mathbf{y}_i\}_{i=1}^m$ from p_d .
- 5: Update the parameter of discriminator by taking gradient ascend of discriminator loss

$$\sum_{i} [\nabla_{\theta_d} \log D(\mathbf{y}_i)] + \sum_{i} [\nabla_{\theta_d} \log (1 - D(\mathbf{x_i}))]$$

- 6:
- Sample a minibatch of samples $\{\mathbf{x}_i\}_{i=1}^m$ from p_{θ} . 7:
- Update the generator by applying gradient update

$$\sum_{i=1}^{m} \left(\frac{r_D(\mathbf{x}_i)}{\sum_i r_D(\mathbf{x}_i)} - b\right) \nabla \log p_{\theta}(\mathbf{x}_i)$$

9: end for

6 Tricks

6.1Monte Carlo Tree Search

• Use a cumulative loss to estimate the total loss

$$E_{p_{\theta}}(r_D(X)\nabla p(X)) = E_{p_{\theta}}(\sum_{t=1}^{L} Q(a_t, s_t)\nabla p_{\theta}(a_t|s_t))$$

• I have doubt with this part in the paper. I believe simple Monte Carlo method is enough for the estimation. Applying MCTS will falsely give a biased estimation over the reward.

6.2 Mixed MLE training

- Variance of training is too large.
- Fix the input to use the training data for N time steps, only let the model generating the remaining T-N time steps. N gradually reduce, from T to 0.

6.3 Single Real-data based re-normalization

- Two layer estimation to reduce variance.
- In each mini-batch, this paper first draws a mini-batch of samples (e.g. 32) of high-level latent variables, then for each high level value draws a number of low-level data samples.

Algorithm of MaliGAN with tricks

Algorithm 2 Sequential MaliGAN with Mixed MLE **Training**

Require: A generator p with parameters θ .

A discriminator D(x) with parameters θ_d . Maximum sequence length T, step size K.

A baseline b, sampling multiplicity m.

- 2: Optional: Pretrain model using pure MLE with some epochs.
- 3: for number of training iterations do
- 4: N = N - K
- 5: for k steps do
- 6:
- Sample a minibatch of sequences $\{\mathbf{y}_i\}_{i=1}^m$ from p_d . While keeping the first N steps the same as $\{\mathbf{y}_i\}_{i=1}^m$, sample a minibatch of sequences $\{\mathbf{x}_i\}_{i=1}^m$ from p_θ from time step N.
- 8: Update the discriminator by taking gradient ascend of discriminator loss.

$$\sum_{i} [\nabla_{\theta_d} \log D(\mathbf{y}_i)] + \sum_{i} [\nabla_{\theta_d} \log(1 - D(\mathbf{x_i}))]$$

- 9: end for
- 10: Sample a minibatch of sequences $\{\mathbf{x}_i\}_{i=1}^m$ from p_d .
- For each sample x_i with length larger than N in the minibatch, clamp the generator to the first N words of s, and freely run the model to generate m samples $\mathbf{x}_{i,j}, j =$ $1, \cdots m$ till the end of the sequence.
- Update the generator by applying the mixed MLE-Mali 12: gradient update

$$\nabla L_G^N \approx \sum_{i=1,j=1}^{m,n} \left(\frac{r_D(\mathbf{x}_{i,j})}{\sum_j r_D(\mathbf{x}_{i,j})} - b \right) \nabla \log p_{\theta}(\mathbf{x}_{i,j}^{>N} | \mathbf{x}_i^{\leq N})$$
$$+ \frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{N} p_{\theta}(a_t^i | \mathbf{s}_t^i)$$

13: **end for**

Evaluation: 8

8.1 Dataset

Discrete MNIST, Poem Generation Dataset and Penn Treebank (PTB) Dataset.

- Discrete MNIST: Treat MNIST as a discrete task.
- Poem Generation Dataset: Generate Chinese poems, Poem-5 and Poem-7.
- Penn Treebank (PTB) Dataset:

8.2 Models in comparison

- MLE
- SeqGAN[1]
- MaliGAN-Basic
- MaliGAN-Full

8.3 Result

1. Result of Poetry generation dataset.

Table 1. Experimental results on Poetry Generation task. The result of SeqGAN is directly taken from (Yu et al., 2017).

Model	Poem-5		Poem-7	
	BLEU-2	PPL	PPL BLEU-2	
MLE	0.6934	564.1	0.3186	192.7
SeqGAN	0.7389	-	-	-
MaliGAN-basic	0.7406	548.6	0.4892	182.2
MaliGAN-full	0.7628	542.7	0.5526	180.2

- 2. Basic version of MaliGAN doesn't show much improvement on MLE.
- 3. According to paper, MCTS works very slow, limits the capacity on large dataset.
- 4. Result of Penn Treebank Dataset.

Table 2. Experimental results on PTB. Note that we evaluate the models in sentence-level.

	MLE	MaliGAN-basic	MaliGAN-full
Valid-Perplexity	141.9	131.6	128.0
Test-Perplexity	138.2	125.3	123.8

References

[1] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Sequence generative adversarial nets with policy gradient. In *Thirty-First AAAI Conference on Artificial Intelligence*, 2017.