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Problem

X ∈ Rm×n

Xij : the probability that USER j likes ITEM i
Goal: reconstruct a huge X from a sparse set of known {Xij}
Example: Netflix challege [8], 480k movies × 18k users (8.5B
entries), with only 0.011% known entries.
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Previous effort 1: low rank assumption

Key assumption: low rank (each entry is defined by a (USER,
ITEM) pair, many entries share the same USER or ITEM)
Challenge: NP-hard combinatorial problem
Ω: known entries set

min
X

rank(X) s.t. xij = yij , ∀ij ∈ Ω, (1)
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Previous effort 2: convex solution

Convex version
‖ · ‖?: nuclear norm, L1-norm of the eigenvalue vector
“Under some technical conditions” [1], (2) has the same solution
as (1).

min
X
‖X‖? +

µ

2
‖Ω ◦ (X− Y)‖2F, (2)
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Previous effort 3: geometric method

Model the relationship among the USERs
Gc = ({1, . . . ,n}, Ec ,Wc), Ec : edge (relation) set.
Wc = (w c

ij ): adjacency matrix
∆c = I− D−1/2WcD−1/2: graph Laplacian
‖X‖2

Gc
= trace(X∆cX>): Dirichlet norm

Both X and ∆cX> should be small.

Model the relationship among the ITEMs
Similiar Gr ,Wr , Er , ‖X‖2

Gr
= trace(X>∆r X)

min
X
‖X‖2Gr + ‖X‖2Gc +

µ

2
‖Ω ◦ (X− Y)‖2F, (3)
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Previous effort 4: factorized models

Explicitly model the low rank assumption by a factorized
representation [12]
X = WH>

W,H are m × r and n × r matrices, r � min(m,n)

So, rank(X)� min(m,n)

‖ · ‖2F: Frobenius norm (L2-norm?)

min
W,H

1
2
‖W‖2F +

1
2
‖H‖2F +

µ

2
‖Ω ◦ (WH> − Y)‖2F. (4)

min
W,H

1
2
‖W‖2Gr +

1
2
‖H‖2Gc +

µ

2
‖Ω ◦ (WH> − Y)‖2F. (5)
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Recall: spectral graph convolution

(6): eigen decomposition of the graph Laplacian
(7): spectral convolution between signal x and filter y
(8): spectral convolution layer

Input x = {xl′} ∈ Rh×w×q′
; Output x̃ = {xl} ∈ Rh×w×q

Drawbacks:
O(n) parameters, no weight sharing
O(n2) computations (multiplication with Φ)

∆ = ΦΛΦ> (6)

x ? y = Φ(Φ>x) ◦ (Φ>y) = Φ diag(ŷ1, . . . , ŷn) x̂ (7)

x̃l = ξ

 q′∑
l ′=1

ΦŶll ′Φ
>xl ′

 , l = 1, . . . ,q (8)
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Recall: CNN on Graphs with Fast Localized Spectral
Filtering [3]

Chebyshev polynomial:
T0(λ) = 1,T1(λ) = λ,Tj(λ) = 2λTj−1(λ)− Tj−2(λ)

Rescaled graph Laplacian: ∆̃ = 2λ−1
n ∆− I

Rescaled eigen values: Λ̃ = 2λ−1
n Λ− I

Benefits:
p = O(1) parameters
O(n) computations (no multiplication with Φ)

x̃ = τθ(∆̃)x (9)

τθ(∆̃) =

p−1∑
j=0

θjΦTj(Λ̃)Φ> =

p−1∑
j=0

θjTj(∆̃) (10)
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Separable CNNs (sMGCNN)

If the factorized representation is used:

w̃l = ξ(

q′∑
l ′=1

p∑
j=0

θr
ll ′,jTj(∆̃r )wl ′) (11)

h̃l = ξ(

q′∑
l ′=1

p∑
j ′=0

θc
ll ′,j ′Tj ′(∆̃c)hl ′) (12)
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Multi-Graph CNNs (MGCNN)

Multi-Graph spectral convolution

X̂ = Φ>r XΦc (13)

X ? Y = Φr (X̂ ◦ Ŷ)Φ>c . (14)
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Multi-Graph CNNs (MGCNN)

Localized version

X̃ =

p∑
j,j ′=0

θjj ′Tj(∆̃r )XTj ′(∆̃c) (15)

(p + 1)2 = O(1) parameters
O(mn) computations, linear complexity
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Matrix diffusion with RNNs
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(Separable) Recurrent Multi-Graph CNN

Figure: Recurrent MGCNN (RMGCNN)

Figure: Separable Recurrent MGCNN (sRMGCNN)
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Loss

Full matrix representation:

`(Θ,σ) = ‖X(T )
Θ,σ‖

2
Gr + ‖X(T )

Θ,σ‖
2
Gc +

µ

2
‖Ω ◦ (X(T )

Θ,σ − Y)‖2F. (16)

Factorized representation:

`(θr ,θc ,σ) = ‖W(T )
θr ,σ
‖2Gr + ‖H(T )

θc ,σ
‖2Gc +

µ

2
‖Ω ◦ (W(T )

θr ,σ
(H(T )

θc ,σ
)> − Y)‖2F.
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Experiments

p = 4,T = 10,q = 32
Datasets:

Synthetic data [7]
MovieLens [10]
Flixster [6]
Douban [9]
YahooMusic [4]

Baselines:
Classical Matrix Completion (MC) [2]
Inductive Matrix Completion (IMC) [5]
Geometric Matrix Completion (GMC) [7]
Graph Regularized Alternating Least Squares (GRALS) [11]
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Synthetic data

Table: Comparison of different matrix completion methods using users+items
graphs in terms of number of parameters (optimization variables) and
computational complexity order (operations per iteration). Rightmost column
shows the RMS error on Synthetic dataset.

METHOD PARAMETERS COMPLEXITY RMSE
GMC O(mn) O(mn) 0.3693
GRALS O(m + n) O(m + n) 0.0114
RGCNN O(1) O(mn) 0.0053
sRGCNN O(1) O(m + n) 0.0106
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Synthetic data

Table: Comparison of different matrix completion methods using users graph
only in terms of number of parameters (optimization variables) and
computational complexity order (operations per iteration). Rightmost column
shows the RMS error on Synthetic dataset.

METHOD PARAMETERS COMPLEXITY RMSE
GRALS O(m + n) O(m + n) 0.0452
sRGCNN O(m) O(m + n) 0.0362
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Synthetic data
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Real data

Table: Performance (RMS error) of different matrix completion methods on the
MovieLens dataset.

METHOD RMSE
GLOBAL MEAN 1.154
USER MEAN 1.063
MOVIE MEAN 1.033
MC [2] 0.973
IMC [5] 1.653
GMC [7] 0.996
GRALS [11] 0.945
sRGCNN 0.929
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Real data

Table: Matrix completion results on several datasets (RMS error). For Douban
and YahooMusic, a single graph (of users and items, respectively) was used.
For Flixter, two settings are shown: users+items graphs / only users graph.

METHOD FLIXSTER DOUBAN YAHOOMUSIC

GRALS 1.3126 / 1.2447 0.8326 38.0423
sRGCNN 1.1788 / 0.9258 0.8012 22.4149
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Conclusion

Application of [3] on Matrix Completion problems
Open source
Extensive experiments
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