Attacking Binarized Neural Networks

Author: Angus Galloway

Vector Institute

Presenter: Faizan Ahmad

https://qdata.github.io/deep2Read

Outline

- Introduction
- 2 Related Work
- Binarized CNNs
- 4 Evaluation and Results
- Discussion

Introduction

- Training neural networks on embedded systems and small devices
 - Large Size
 - Slow Computation
- ullet Binarized Neural Networks: Weights and Activations constrained to +1.-1
 - Small Size
 - Faster Computation
 - Robust to Adversarial Attacks?

Adversarial Attacks

Craft an input to make the model misclassify it

- White box access to model
- Black box no access
 - Attacks on surrogate models transfer well
- Various defenses proposed
 - Adversarial Training
 - Projected Gradient Descent

Binarized CNN

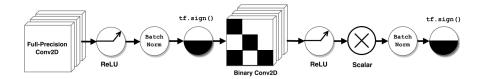


Figure: Binarized Convolutional Architecture

- Deterministic binarizing for activation output
- Stochastic binarizing for weights to act as a defense against adversarial attacks

Testbed

- Whitebox attacks
 - Fast Gradient Sign Method
 - Carlini Wagner Method
- Blackbox attacks
 - Surrogate model attack
- All attacks performed on MNIST

Fast Gradient Sign Method

- Single step attack
- Take gradient with respect to input
- Do gradient ascent with loss function

$$x_{adv} = x + \epsilon \times sign(\Delta_x J(\theta, x, y))$$

Fast Gradient Sign Method

Model	K_{Layer1}	$\epsilon = 0.1$	$\epsilon = 0.2$	$\epsilon = 0.3$
	64	74±4%	39±4%	22±5%
A	128	75±3%	34±2%	18±3%
	256	74±1%	33±2%	17±3%
	64	75±2%	64±3%	59±2%
В	128	85±1%	77±2%	70±2%
	256	89±1%	83±1%	78±1%
	64	56±7%	27±5%	15±3%
C	128	64±3%	26±9%	11±5%
	256	73±2%	37±6%	16±3%

Figure: A - Full Precision Model, B - Binarized Model, C - Scale Output after Relu Activations

Fast Gradient Sign Method

Train model with Projected Gradient Descent for 40 iterations - to mitigate against attacks

Model	K_{Layer1}	$\epsilon = 0.1$	$\epsilon = 0.2$	$\epsilon = 0.3$
	64	94.7±0.2%	90.9±0.3%	80.2±0.2%
A+*	128	95.8±0.3%	92.3±0.3%	82.9±0.9%
	256	$95.9 \pm 0.2\%$	$92.9 \pm 0.3\%$	85±1%
C+*	64	92.9±0.4%	83.6±0.6%	67±2%
	128	95.0±0.2%	88.2±0.3%	74.3±0.6%
	256	96.8±0.3%	93.4±0.3%	85.6±0.6%

Figure: A - Full Precision Model, B - Binarized Model, C - Scale Output after Relu Activations

Carlini Wagner Attack

- Iterative procedure
- Proposed by Nicholas Carlini in "Towards Evaluating the Robustness of Neural Networks"

Model	B32	B64	B128	B256
Accuracy Mean L_2 dist.	7±1% 2.88±0.02	7±3% 3.1±0.2	12±3% 3.2±0.1	22±3% 3.2±0.1
Model	B32+	B64+	B128+	B256+
Accuracy Mean L_2 dist.	3±1% 3.36±0.03	2.9±0.6% 3.43±0.05	15±2% 2.9±0.1	29±3% 2.4±0.2
Model	_	S64	S128	S256
Accuracy Mean L_2 dist.	- -	71 ± 2 % 1.9±0.3	57 ± 5 % 3.0±0.4	46 ± 3 % 3.5±0.1

Figure: S - Stochastic Quantization, B+ - Adversarial Training, B - Binarized Network

Carlini Wagner Attack

Figure: Accuracy decrease vs iterations

Black Box Attack

Carlini Wagner Attack

- Train a surrogate model and devise white box attacks against it
- Perform the attacks on a blackbox model

Filters	64	128	256
A	79±1%	78±4%	73±5%
A+	73±2%	76±4%	80±2%
A+*	95.8±0.4%	96.4±0.3%	96.7±0.3%
В	46±5%	55±4%	39±3%
B+	42±2%	52±3%	50±6%

Figure: Accuracy against blackbox model attacks

Discussion

- Very robust against white box attacks
 - Both iterative and single step
- Adversarial training helps a lot
- Blackbox attacks work equally well on binary and full precision models