Similarity Learning with Higher-Order Graph Convolutions for Brain Network Analysis Guixiang Ma¹, Nesreen K. Ahmed², Ted Willke², Dipanjan Sengupta², Michael W. Cole³, Nicholas B. Turk-Browne⁴, Philip S. Yu¹

Presenter: Arshdeep Sekhon https://qdata.github.io/deep2Read

- learn a similarity between brain networks
- Uses GCN in a Siamese framework
- incorporating higher-order proximity via random walks in graph convolutional networks
- incorporates community structure in brain nets
- 4 real world brain datasets with respect to brain health status and cognitive abilities

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- a multi-subject fMRI data set $\mathcal{G} = \{G_1, G_2, \cdots, G_N\}$
- where $G_i = (V_i, E_i, \mathbf{A_i})$ is the fMRI brain network of subject *i*,
- V_i is the set of vertices in G_i ,
- $E_i \subset V_i \times V_i$ is the set of edges in G_i ,
- $\mathbf{A_i} \in \mathbb{R}^{m \times m}$ is the affinity matrix of G_i

- A whole-brain fMRI image consists of a sequence of 3D brain image scans, where each volume consists of hundreds of thousands of voxels.
- To convert the original fMRI images to region-by-region brain networks, extract a sequence of responses from each of the regions of interest (ROI), where each ROI represents a brain region.
- compute the region-to-region brain activity correlations.
- only keep the positive correlations as the links among the brain regions.
- The final constructed network is a graph where the nodes/vertices represent brain regions and the edges are the region-to-region correlations.

< ロ > < 同 > < 回 > < 回 >

Higher-order Graph Convolutional Networks.

GCNs use spectral filterings : localized to within K neighbor nodes

$$y = g_{\theta} * \mathbf{x} = g_{\theta}(\mathbf{L})\mathbf{x} = g_{\theta}(\mathbf{U}\wedge\mathbf{U}^{\mathsf{T}})\mathbf{x} = \mathbf{U}g_{\theta}(\wedge)\mathbf{U}^{\mathsf{T}}\mathbf{x}$$
(1)

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k T_k(\hat{\Lambda})$$
(2)

filtering operation can be written as $y = g_{\theta}(\mathbf{L})\mathbf{x} = \sum_{k=0}^{K-1} \theta_k T_k(\hat{L})\mathbf{x}$, where $T_k(\hat{L}) \in \mathbb{R}^{n \times n}$ is the Chebyshev polynomial of order *k*. The *j*th output feature map of sample s is then given by

$$y_{s,j} = \sum_{i=1}^{F_{in}} g\theta_{i,j}(L) x_{s,i} \in \mathbb{R}^m$$
(3)

build the GCN by stacking multiple convolutional layers with a non-linearity activation (ReLU) following each layer.

where *N* is the total number of subjects in the training set, and $N_p = N(N-1)/2$ is the total number of pairs from the training set.

Similarity Learning with Higher-Order Graph CPresenter: Arshdeep Sekhon https://qdat

Algorithm 1 Higher-order Siamese GCN

- **Input:** $\mathcal{G} = G_1, G_2, \cdots, G_n$ (training graph samples); y(class labels); random walk parameters: γ (number of walks), l (walk length), w (window size)
- 1: Obtain the mean k-nn graph $\bar{G}(V, E, \bar{\mathbf{A}})$;
- 2: Initialize a frequency matrix $\mathbf{F} \in \mathbb{R}^{m \times m}$ with 0s;
- 3: for i = 0 to γ do
- 4: V' = Shuffle(V);
- 5: for each $v_i \in V'$ do
- 6: $W_{v_i} = RandomWalk(\bar{G}, v_i, l);$
- 7: Update F;
- 8: end for
- 9: end for
- 10: Obtain a k-nn graph G' based on \mathbf{F} ;
- 11: Merge the edges of G' into \overline{G} ;
- 12: Obtain the updated adjacency matrix A;
- 13: Prepare pairs of training samples from \mathcal{G} ;
- 14: Initialize the parameters Θ of GCNs in Siamese network;
- 15: while not converge do
- 16: Perform spectral filterings according to Equation (3);
- 17: Compute the similarity estimate s_{ij} for the input pair (G_i, G_j) ;
- 18: Compute the loss L^{hinge} according to Equation (4);
- 19: Apply stochastic gradient descent with ADAM optimizer to update Θ ;
- 20: end while

- Autism Brain imaging Data Exchange (ABIDE)
- Human Connectome Project (HCP): Does not have class labels of cognitive traits, use three key cognitive features from the participants' behavioral data to apply K-means clustering with the three features to cluster the subjects into 2 groups
- Bipolar: fMRI data of 52 bipolar I subjects who are in euthymia and 45 healthy controls with matched demographic characteristics
- Human Immunodeficiency Virus Infection (HIV): resting-state fMRI data of 77 subjects, 56 of which are early HIV patients and the other 21 subjects are seronegative controls.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Table: AUC Scores of Pair Classification (mean \pm std).

Methods	ABIDE	HCP	HIV	Bipolar
PCA	0.51 ± 0.01	$\textbf{0.52}\pm\textbf{0.01}$	$\textbf{0.54} \pm \textbf{0.07}$	$\textbf{0.52}\pm\textbf{0.01}$
SE	0.55 ± 0.02	0.54 ± 0.01	0.57 ± 0.02	$\textbf{0.55} \pm \textbf{0.01}$
S-GCN	$\textbf{0.78} \pm \textbf{0.29}$	0.81 ± 0.36	$\textbf{0.61} \pm \textbf{0.25}$	$\textbf{0.74} \pm \textbf{0.19}$
HS-GCN	$\textbf{0.96} \pm \textbf{0.02}$	$\textbf{0.98} \pm \textbf{0.03}$	$\textbf{0.77} \pm \textbf{0.20}$	$\textbf{0.94} \pm \textbf{0.07}$

Results: Visualization

(a) Bipolar

(b) Healthy

Figure: Visualization of the community structure captured by HS-GCN in healthy and bipolar disease networks. Notably this figure highlights the reduced functional connectivity as shown by decreased clustering in the bipolar network.

(a) *ABIDE* (b) *Bipolar* Figure: Pair classification AUC of S-GCN and HS-GCN with different values for K

of GC layers

Subject Classification Loss

Figure: Subject classification accuracy on ABIDE and Bipolar with two different loss functions: We apply the weighted k-nearest neighbour (kNN)

$$L^{convar} = max(0, \delta^{2+} - a) + max(0, \delta^{2-} - a) + max(0, m - (\sigma^{+} - \sigma^{-})),$$
(5)

Parameter Analysis

- for learning similarity among fMRI brain networks using higher-order GCNs as the twin
- working well for relatively small datasets
- Graphs structurally different per sample but uses the same modified *A* for all samples
- limited to fMRI or known graph structures

< ロ > < 同 > < 回 > < 回 >