Espresso: Efficient Forward Propagation for Binary Deep Neural Networks

Fabrizio Pedersoli, George Tzanetakis, Andrea Tagliasacchi

University of Victoria

Presenter: Eamon Collins

https://qdata.github.io/deep2Read

Overview

Motivation

- Prior Work
- Contributions

2 Method

- Binarization and Bit-Packing
- Memory Layout

Conclusion

- Experiments
- Results
- Takeaways
- References

- Make binary networks even faster
 - Leverage bit-packing and bit-wise operations
- End-to-end software framework
 - Easy to apply to existing networks

- Quantization and specifically binarized networks well-studied
- BinaryNet

- Includes a binary-optimized version of matrix multiplication, $7 \ensuremath{x}$ faster than baseline

- Replace floating-point multiply and add with XNOR and bitcount

- Bit-packing in network layers
- Memory layout optimization
- Custom CUDA kernels optimized for binary weights and activations

Binarization

A BDNN is composed of a sequence of k = 1, ..., L layers whose weights W_k^b and activations a_k^b are binarized to the values -1, +1.

$$x^b = sign(x) = egin{cases} +1 & x \geq 0 \ -1 & otherwise \end{cases}$$

Bit-Packing

Store weights in a 64-bit word. We can compute a dot-product of 64 element vectors by using just one XNOR and one bit-count. Assuming binary vectors vectors $a, b \in B^{1 \times N}$ where N is a multiple of 64,

$$a \cdot b \equiv ((\sum_{i=1}^{N/64} \text{bitcount}(XNOR(a_i, b_i))) \ll 1) - N$$

Memory Layout

- For convolutional layers, bit-packing is performed along the *l* dimension
- Otherwise, along the *n* dimension
- Allows for good cache locality

- Unroll: transform a tensor into a matrix where each row is formed by unrolling the tensor data contained in each convolution sliding volume
- Otherwise, along the *n* dimension
- Allows for good cache locality

Baselines

- BinaryNet
- Optimized BDNN implemented in the Intel Nervana Neon framework
- Espresso GPU (cache locality but no XNOR dot product)
- Espresso GPU^{opt}

Tasks

- Matrix multiplication
- MLP on MNIST
- ONN on CIFAR-10

Results

Table 1: Averaged time of binary optimized matrix multiplication.

BinaryNet	Espresso GPU ^{opt} 32-bit	Espresso GPU ^{opt} 64-bit
$88\mathrm{ms}$	$16 \operatorname{ms} (5.5 \times)$	$11\mathrm{ms}(8 imes)$

Table 2: Average prediction time of the BMLP.

BinaryNet	Nervana/Neon	Espresso CPU	Espresso GPU	Espresso GPU^{opt}
$18\mathrm{ms}$	$17\mathrm{ms}$	$37.4\mathrm{ms}$	$3.2\mathrm{ms}(5.6 imes)$	$0.26\mathrm{ms}(68 imes)$

Table 3: Average prediction time of the BCNN.

Espresso CPU	Espresso GPU	Espresso GPU ^{opt}
$85.2\mathrm{ms}$	$5.2\mathrm{ms}(16 imes)$	$1.0\mathrm{ms}(85 imes)$

- Demonstrate great speedups over BinaryNet and Nervana for MLP
 - Difficult to understand where the unoptimized GPU implementation gains the speedup on $\ensuremath{\mathsf{MLP}}$
- Significant speedups from both memory layout and bit-wise operations
- No binarized CNN implementation to compare to, would likely do well though.
 - No mention of XNOR-net?

. Courbariaux, I. Hubara

Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to ± 1 or 1

In International Conference on Learning Representations, 2017.

atthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks with low precision multiplications. arXiv preprint arXiv:1412.7024, 2014.