Two papers on Interpret GNN models

Presenter: Ji Gao

https://qdata.github.io/deep2Read

Presenter: Ji Gao

Two papers on Interpret GNN models https://qdata.github.io/deep2Read

Outline

- Method
 - Edge
 - Feature
 - Multi-instance explanation
 - Link prediction and Graph classification
- Experiment result

Interpretable Graph Convolutional Neural Networks for Inference on Noisy Knowledge Graphs

- Method
- Result

GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural Networks[YBY⁺19]

- Deep learning model is too complicated, hard to understand.
- Propose GNNEXPLAINER, an model agnostic approach for providing interpretable explanations for predictions of any GNN models
 - Generate a simplified graph model(Subgraph)
 - Maximize the mutual information between the prediction between full model and simplified graph

- Graph G = (V, E, X)
- Feature $X = x_1, ..x_n, x_i \in \mathcal{R}^d$
- Label function $f: V \rightarrow 1..C$
- Explanation: Edge/Feature on what model learned

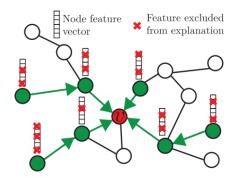


Figure 2: For v's explanation G_S (in green), GNNEXPLAINER identifies what feature dimensions of G_S 's nodes are essential for prediction at v by learning a node feature mask M_T .

• Goal: Maximize mutual information gain

$$\max_{G_{S}} MI(Y, (G_{S}, X_{S})) = H(Y) - H(Y|G = G_{S}, X = X_{S})$$

- Impose a size constraint $|G_S| \leq k$
- In fact, H(Y) is a constant. Only need to minimize the second term.

$$H(Y|G = G_{S}, X = X_{S}) = -E_{Y|G_{S}, X_{S}}[\log P_{\phi}(Y|G = G_{S}, X = X_{S})]$$

• Similar to adversarial sample.

Optimization on edges

- Treat G_S in a continuous way: $A_S \in [0,1]^{n imes n}$
- By Jensen's inequality

 $\min_{\mathcal{G}} \mathbb{E}_{G_{S} \sim \mathcal{G}} H(Y|G = G_{S}, X = X_{S}) \leq \min_{\mathcal{G}} H(Y|G = \mathbb{E}_{\mathcal{G}}[G_{S}], X = X_{S})$

- According to mean field variational approximation, decompose G into $P_G(G_S) = \prod_{(i,j) \in G_c(v_i)} A_{Sij}$
- True objective: find a mask M, that $\sigma(M)$ is a 0,1 mask function $\in \{0,1\}^{N \times N}$

$$\min_{M} -\mathbb{E}_{Y|A_{S}\odot\sigma(M),X_{S}} \left[\log P_{\Phi}(Y|G=A_{S}\odot\sigma(M),X=X_{S})\right]$$
$$=\min_{M} -\sum_{c=1}^{C} \mathbf{1}[y=c] \log P_{\Phi}(Y=y|G=A_{S}\odot\sigma(M),X=X_{S}).$$

• A binary feature subset $T \in \{0, 1\}^D$, that:

$$MI(Y, (G_S, T)) = H(Y) - H(Y|G = G_S, X = X_S^T)$$

• Use a Monte Carlo estimation:

$$P_{\Phi}(Y|G_S, X_S^T) = \sum_{x_i \in D \setminus T} P(x_i) P_{\Phi}(Y|G = G_S, X = \{X_S^T, x_i\})$$

• In real case, sample a random variable Z of dimension $n \times d$ from the marginal distribution of X_S , and then, $X = Z + (X_S - Z) \odot M_T$

- Explanation size: Explanation size can be set with a regularization term
- Discrete mask: Discrete Mask can be encouraged by regularizing the cross entropy of M and M_T:

$$H(M) = -\sum_{1 \le i,j \le n} (M_{i,j} \log M_{i,j} + (1 - M_{i,j}) \log(1 - M_{i,j}))$$

• Prior knowledge: If some prior of labels exists, it can be added with in the form of Laplacian smoothing $f^T L_S f$

- Construct a prototype graph of the classified node
 - Create a reference node by computing the mean of all node embeddings, and pick the nearest node in the dataset.
 - Align every subgraphs G_S(v) to the reference node v_c Matching the subgraphs lead to an optimization:

$$\min_{P} |P^{T}A_{v}P - A^{*}| + |P^{T}X_{v} - X^{*}|.$$

However, in this case

$$A_{\rm proto} = \frac{1}{n} \sum_{i} A_{i}$$

• Learn masks for two nodes for link prediction

$$P_{\Phi}(Y|G_1 = A_{S_i} \odot M_1, G_2 = A_{S_j} \odot M_2, X = X_S),$$

• Use Y as the graph labels in graph classification

Examples

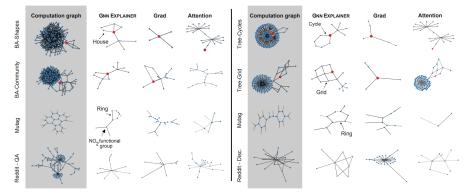


Figure 3: Examples of single-instance important subgraphs. The red node is the explained node.

Feature importance

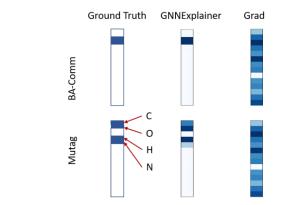


Figure 4: Feature importance visualization

Baselines:

- Attention value in GAT
- Gradient

Table 1: GNNEXPLAINER compared to baselines in identifying subgraphs using AUC.

	BA-Shapes	BA-Community	TREE-CYCLES
GAT	0.957	0.974	0.914
Grad	0.936	0.883	0.885
GNN	0.991	0.993	0.975

Multi-instance prototype

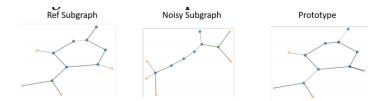


Figure 5: GNNEXPLAINER is able to provide a prototype for a given node class, which can help identify functional subgraphs, e.g. a mutagenic compound from the MUTAG dataset.

Interpretable Graph Convolutional Neural Networks for Inference on Noisy Knowledge Graphs[NBL⁺18]

• New GCNN on link prediction

- On biomedical knowledge base
- Provide experiment result and Visualization

New GCNN formulation

• Use an attention matrix $C_r \in \mathcal{R}^{N imes N}$, on different type of edge

$$H^{(l+1)} = \sigma \left(B^{(l)} + \sum_{r \in \mathcal{R}} (C_r \odot A_r) (H^{(l)} W_r^{(l)}) \right)$$
(1)

• Also learn Relation matrix *R*, which is a simple embedding matrix. Link prediction:

$$f(e_s, R_r, e_o) = e_s^T R_r e_o \tag{2}$$

Use a fixed total budget:

$$C_{r,i,j} = \frac{1}{\sum_{r' \in \mathcal{R}} \sum_{j' \in \mathcal{N}_i^r} |\hat{C}_{r',i,j'}|} |\hat{C}_{r,i,j}|$$
(3)

	Hits@10			MRR				
Algorithm	100%	50%	Skip	Noised	100%	50%	Skip	Noised
DistMult	43.2	20.2	N/A	20.6	23.9	8.69	N/A	8.93
ComplEx	44.1	24.1	N/A	24.3	25.9	10.9	N/A	11.0
GCNN	47.5	33.2	25.8	21.4	27.2	16.8	13.3	11.1
GCNN w/att	48.2	34.7	34.0	35.6	28.3	18.5	18.8	19.1
R-GCN+ ([21])	41.7	-	-	-	24.9	-	-	-

Table 1: Performance on the FB15k-237 Dataset. Our results compare favorably with those reported in previous GCNN studies.

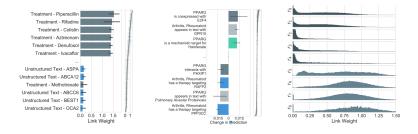


Figure 3: Left: Ranking of a node's influencers. The top 6 and bottom 6 known weighted-edges (+/standard error) for cystic fibrosis are visualized as an example. Centre: Analyzing the drivers of link prediction, evaluating the possibility of PPARG being a drug target for Rheumatoid Arthritis. Each bar demonstrates the effect that fact has on prediction score (+/- standard error). Right: Distribution of edge weights across $r \in \mathcal{R}$ in the biomedical knowledge graph.

- Daniel Neil, Joss Briody, Alix Lacoste, Aaron Sim, Paidi Creed, and Amir Saffari, Interpretable graph convolutional neural networks for inference on noisy knowledge graphs, arXiv preprint arXiv:1812.00279 (2018).
- Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec, Gnn explainer: A tool for post-hoc explanation of graph neural networks, arXiv preprint arXiv:1903.03894 (2019).