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Introduction

Unconditional text generation - important problem

Two limitations of log-likelihood based methods

Exposure bias
Redundant Text

GANs to the rescue
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Related Work

Two types of GANs for text generation
Reinforcement Learning based - discriminator is trained via policy
gradients

High Variance

Soft approximations e.g Gumbel Softmax

Low variance but generic samples and low diversity

Feature Matching approaches to the rescue
TextGAN - Match feature distribution using Maximum Mean
Discrepancy

Short sentences, kernel choice
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FM-GAN
Feature Matching GAN

Basic Idea: Adversarial Distribution Matching
Bring real and synthetic distribution of sentences closer to each other

How?
Earth Mover Distance from Optimal Transport

Differentiable
Easy to compute

Figure: Proposed System
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Adversarial Distribution Matching

Match synthetic and actual text distribution using GANs loss function

pd - real samples
pG - generated samples
D - discriminator

Use Earth Mover Distance (EMD) for training

Author: Liqun Chen Adversarial Text Generation via Feature-Mover’s DistancePresenter: Faizan Ahmad https://qdata.github.io/deep2Read 6 / 11

https://qdata.github.io/deep2Read


Complete Algorithm
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Testbed

Figure: Datasets used for experiments

Evaluation Metrics

Test-BLEU-n
Self-BLEU
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Results
Comparison Benchmarks
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Qualitative Results
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Takeaways

Advancing text generation by GANs

But do we really need GANs for text generation?

OpenAI’s new language system writes really great fake news
Some pretty impressive machine-learning generated poetry courtesy of
GPT-2

Better applications of these models include style transfer, adversarial
samples etc

Feature matching is an interesting idea in GANs, works well across
different domains
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