MILE: A Multi-Level Framework for Scalable Graph Embedding

Credit: Jiongqian Liang, Saket Gurukar, Srinivasan Parthasarathy

Ohio State University

Presenter: Ryan McCampbell

https://qdata.github.io/deep2Read
Outline

1 Introduction

2 MILE
 • Graph Coarsening
 • Base Embedding
 • Embeddings Refinement

3 Results

4 Conclusions
Introduction

- We have discussed graph embeddings without end
- But how well do these methods scale?
Introduction

- Random walk-based methods
 - DeepWalk
 - Node2Vec
 - Require lots of CPU time to generate enough walks

- Matrix Factorization methods
 - GraRep
 - NetMF
 - Require large objective matrix to factor
 - Can easily require hundreds of GB
Real-world graphs can have millions of nodes

- Google knowledge graph - 570M entities
- Facebook friendship graph - 1.39B users with 1 trillion connections
Challenge

- Can we scale up existing embedding techniques in an agnostic manner so that they can be directly applied to larger datasets?
- Can the quality of embeddings be strengthened by incorporating a holistic view of the graph?
Outline

1. Introduction

2. MILE
 - Graph Coarsening
 - Base Embedding
 - Embeddings Refinement

3. Results

4. Conclusions
3-step process:

1. Repeatedly coarsen graph into smaller ones using hybrid matching strategy
2. Compute embeddings on coarsest graph using existing embedding method
 - Inexpensive and less memory than full graph
 - Captures global structure
3. Novel refinement model - learn graph convolution network to refine the embeddings from the coarsest graph to the original graph
MILE Overview

Input graph G_0

Final Embedding \mathcal{E}_0

G_1

\mathcal{E}_1

Coarsening

G_m

Refining

Base Embedding \mathcal{E}_m

Credit: Jiongqian Liang, Saket Gurukar, Srinivasan Parthasarathy (Ohio State University)
Outline

1 Introduction

2 MILE
 - Graph Coarsening
 - Base Embedding
 - Embeddings Refinement

3 Results

4 Conclusions
Graph Coarsening

- Graph G_0 repeatedly coarsened into smaller graphs $G_1, ..., G_m$
- To coarsen G_i to G_{i+1}, multiple nodes are collapsed to form super-nodes
- Edges on super-nodes are union of original nodes’ edges
- Set of nodes forming super-node called *matching*
Two nodes are *structurally equivalent* if they are incident on the same set of neighborhoods.

If two vertices \(u \) and \(v \) in an unweighted graph \(G \) are structurally equivalent, then their node embeddings derived from \(G \) will be identical.

Structural equivalence matching is set of nodes that are structurally equivalent to each other.
Normalized Heavy Edge Matching (NHEM)

- Heavy edge matching is pair of vertices with largest weight edge between them
- Normalize weights:

\[W_i(u, v) = \frac{A_i(u, v)}{\sqrt{D_i(u, u)D_i(v, v)}} \]

- Penalize weights of edges connected to high-degree nodes
Hybrid Matching Method

- Combine SEM and NHEM

(a) Using SEM and NHEM for graph coarsening
Matching matrix $M_{i,i+1}$ stores matching info from G_i to G_{i+1}

- Adjacency matrix is constructed from match matrix:

$$A_{i+1} = M_{i,i+1}^T A_i M_{i,i+1}$$
(b) Adjacency matrix and matching matrix

\[A_0 = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[A_1 = M_{0,1}^T A_0 M_{0,1} = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 0 \end{pmatrix} \]
Algorithm 1 Graph Coarsening

Input: A input graph G_0, and $\#$ levels for coarsening m.

Output: Graph G_i and matching matrix $M_{i-1,i}$, $\forall i \in [1, m]$.

1: for $i = 1...m$ do
2: \hspace{1em} $M_1 \leftarrow$ all the structural equivalence matching in G_{i-1}.
3: \hspace{1em} Mark vertices in M_1 as matched.
4: \hspace{1em} $M_2 = \emptyset$. ▷ storing normalized heavy edge matching
5: \hspace{1em} Sort V_{i-1} by the number of neighbors in ascending order.
6: for $v \in V_{i-1}$ do
7: \hspace{2em} if v and u are not matched and $u \in \text{Neighbors}(v)$ then
8: \hspace{3em} $(v, u) \leftarrow$ the normalized heavy edge matching for v.
9: \hspace{3em} $M_2 = M_2 \cup (v, u)$, and mark both as matched.
10: Compute matching matrix $M_{i-1,i}$ based on M_1 and M_2.
11: Derive the adjacency matrix A_i for G_i using Eq. 2.
12: Return graph G_i and matching matrix $M_{i-1,i}$, $\forall i \in [1, m]$.

Credit: Jiongqian Liang, Saket Gurukar, SriniMILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdata.github.io/deep2Read
Outline

1 Introduction

2 MILE
 - Graph Coarsening
 - Base Embedding
 - Embeddings Refinement

3 Results

4 Conclusions
After coarsening the graph for m iterations, apply graph embedding f on coarsest graph G_m.

- Agnostic to graph embedding method: can use any embedding algorithm
- They tried DeepWalk, Node2Vec, GraRep, and NetMF
Outline

1 Introduction

2 MILE
 - Graph Coarsening
 - Base Embedding
 - Embeddings Refinement

3 Results

4 Conclusions
Embeddings Refinement

- Need to derive embeddings E for G_0 from G_m
- Infer embeddings E_i from E_{i+1}
- Projected embeddings:

$$E_i^p = M_{i,i+1} E_{i+1}$$

- Embedding of super-node copied to original nodes
- Nodes will share same embeddings

Credit: Jiongqian Liang, Saket Gurukar, Srini\textregistered MILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell \url{https://qdata.github.io/deep2Read}
Graph Convolution Network

- Graph convolution:
 \[X \ast_G g = U \theta_g U^T X \]
 - \(\theta \): Spectral multipliers, \(U \): eigenvectors of normalized Laplacian
- Fast approximation:
 \[X \ast_G g \approx \tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} X \Theta \]
 - \(\tilde{A} = A + \lambda D \), \(\tilde{D}(i, i) = \sum_j \tilde{A}(i, j) \)
 - \(\lambda \) hyper-parameter
 - \(\Theta \) trainable weight
Refine embeddings using graph convolution network

\[E_i = R(E_i^p, A_i) = H^{(l)}(E_i^p, A_i) \]

\[H^{(k)}(X, A) = \sigma(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}H^{(k-1)}(X, A)\Theta^{(k)}) \]
We can run base embedding on G_i to generate "ground-truth" embeddings for training loss.

Learn $\Theta^{(k)}$ on coarsest graph and reuse them across all levels.

Use base embedding on coarsest graph to get ground truth embeddings $E_m = f(G_m)$.

Further coarsen G_m to G_{m+1} and get another embedding $E_{m+1} = f(G_{m+1})$.

Predict $R(E^p_m, A_m) = H^{(l)}(M_{m,m+1}E_{m+1}, A_m)$.

Loss:

$$L = \frac{1}{|V_m|} \left\| E_m - H^{(l)}(M_{m,m+1}E_{m+1}, A_m) \right\|^2$$
Problems with "double-base" embedding
- Requires extra coarsening and base embedding
- Embeddings may not be comparable since learned independently

Better method:
- Copy G_m, eliminate extra coarsening and embedding
- $E_{m+1} = E_m$

$$L = \frac{1}{|V_m|} \left\| E_m - H^{(l)}(E_m, A_m) \right\|^2$$
Algorithm 2 Multi-Level Algorithm for Graph Embedding

Input: A input graph $G_0 = (V_0, E_0)$, # coarsening levels m, and a base embedding method $f(\cdot)$.
Output: Graph embeddings E_0 on G_0.

1: Use Algorithm 1 to coarsen G_0 into $G_1, G_2, ..., G_m$.
2: Perform base embedding on the coarsest graph G_m (See Eq. 3).
3: Learn the weights $\Theta^{(k)}$ using the loss function in Eq. 10.
4: for $i = (m - 1)...0$ do
5: Compute the projected embeddings E_i^p on G_i using Eq. 4.
6: Use Eq. 7 and Eq. 8 to compute refined embeddings E_i.
7: Return graph embeddings E_0 on G_0.
Outline

1. Introduction

2. MILE
 - Graph Coarsening
 - Base Embedding
 - Embeddings Refinement

3. Results

4. Conclusions
Table 2: Dataset Information

<table>
<thead>
<tr>
<th>Dataset</th>
<th># Nodes</th>
<th># Edges</th>
<th># Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI</td>
<td>3,852</td>
<td>37,841</td>
<td>50</td>
</tr>
<tr>
<td>Blog</td>
<td>10,312</td>
<td>333,983</td>
<td>39</td>
</tr>
<tr>
<td>Flickr</td>
<td>80,513</td>
<td>5,899,882</td>
<td>195</td>
</tr>
<tr>
<td>YouTube</td>
<td>1,134,890</td>
<td>2,987,624</td>
<td>47</td>
</tr>
<tr>
<td>Yelp</td>
<td>8,938,630</td>
<td>39,821,123</td>
<td>22</td>
</tr>
</tbody>
</table>
Figure: Performance of different methods and number of levels
Results

Figure: Memory consumption

(a) MILE (GraRep)

(b) MILE (NetMF)
Outline

1 Introduction

2 MILE
 - Graph Coarsening
 - Base Embedding
 - Embeddings Refinement

3 Results

4 Conclusions
MILE is:

- scalable
- improves embedding quality
- supports multiple embedding strategies

This makes graph learning applicable to much broader and more interesting applications