MILE: A Multi-Level Framework for Scalable Graph Embedding

Credit: Jiongqian Liang, Saket Gurukar, Srinivasan Parthasarathy

Ohio State University

Presenter: Ryan McCampbell https://qdata.github.io/deep2Read

Introduction

2 MILE

- Graph Coarsening
- Base Embedding
- Embeddings Refinement

3 Results

Introduction

2 MILE

- Graph Coarsening
- Base Embedding
- Embeddings Refinement

3 Results

4 Conclusions

Credit: Jiongqian Liang, Saket Gurukar, SriniMILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdat

∃ ► < ∃ ►</p>

- We have discussed graph embeddings without end
- But how well do these methods scale?

Credit: Jiongqian Liang, Saket Gurukar, Srini MILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdat

< ∃⇒

- Random walk-based methods
 - DeepWalk
 - Node2Vec
 - Require lots of CPU time to generate enough walks
- Matrix Factorization methods
 - GraRep
 - NetMF
 - Require large objective matrix to factor
 - Can easily require hundreds of GB

- Real-world graphs can have millions of nodes
 - Google knowledge graph 570M entities
 - Facebook friendship graph 1.39B users with 1 trillion connections

- Can we scale up existing embedding techniques in an agnostic manner so that they can be directly applied to larger datasets?
- Can the quality of embeddings be strengthened by incorporating a holistic view of the graph?

Introduction

2 MILE

- Graph Coarsening
- Base Embedding
- Embeddings Refinement

3 Results

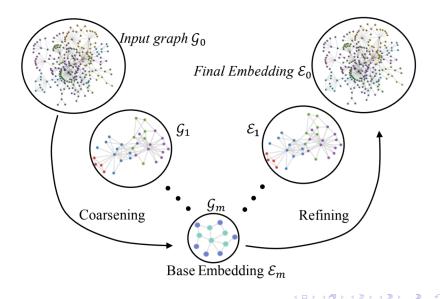
4 Conclusions

Credit: Jiongqian Liang, Saket Gurukar, SriniMILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdat

∃ ► < ∃ ►</p>

3-step process:

- Repeatedly coarsen graph into smaller ones using hybrid matching strategy
- Compute embeddings on coarsest graph using existing embedding method
 - Inexpensive and less memory than full graph
 - Captures global structure
- Novel refinement model learn graph convolution network to refine the embeddings from the coarsest graph to the original graph



Introduction

2 MILE

• Graph Coarsening

- Base Embedding
- Embeddings Refinement

3 Results

4 Conclusions

Credit: Jiongqian Liang, Saket Gurukar, SriniMILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdat

▶ ∢ ∃ ▶

- Graph G_0 repeatedly coarsened into smaller graphs $G_1, ..., G_m$
- To coarsen G_i to G_{i+1} , multiple nodes are collapsed to form super-nodes
- Edges on super-nodes are union of original nodes' edges
- Set of nodes forming super-node called matching

- Two nodes are *structurally equivalent* if they are incident on the same set of neighborhoods
- If two vertices *u* and *v* in an unweighted graph *G* are structurally equivalent, then their node embeddings derived from *G* will be identical.
- *Structural equivalence matching* is set of nodes that are structurally equivalent to each other

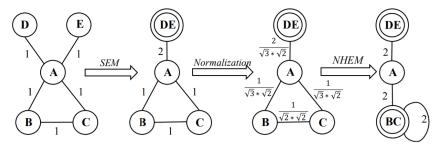
- Heavy edge matching is pair of vertices with largest weight edge between them
- Normalize weights:

$$W_i(u, v) = \frac{A_i(u, v)}{\sqrt{D_i(u, u)D_i(v, v)}}$$

• Penalize weights of edges connected to high-degree nodes

Hybrid Matching Method

• Combine SEM and NHEM



(a) Using SEM and NHEM for graph coarsening

- Matching matrix $M_{i,i+1}$ stores matching info from G_i to G_{i+1}
- Adjacency matrix is constructed from match matrix:

$$A_{i+1} = M_{i,i+1}^T A_i M_{i,i+1}$$

Matching Matrix

$$A_{0} = \begin{pmatrix} A & B & C & D & E \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad M_{0,1} = \begin{pmatrix} A & BC & DE \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} A \\ B \\ C \\ D \\ E \end{bmatrix}$$
$$A_{1} = M_{0,1}^{T} A_{0} M_{0,1} = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 0 \end{pmatrix}$$

(b) Adjacency matrix and matching matrix

Credit: Jiongqian Liang, Saket Gurukar, Srini MILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdat

• • = • • = •

Algorithm 1 Graph Coarsening

Input: A input graph \mathcal{G}_0 , and # levels for coarsening m. **Output**: Graph \mathcal{G}_i and matching matrix $M_{i-1,i}, \forall i \in [1,m]$.

1: for i = 1...m do

2: $\mathcal{M}_1 \leftarrow \text{all the structural equivalence matching in } \mathcal{G}_{i-1}.$

3: Mark vertices in \mathcal{M}_1 as matched.

4: $\mathcal{M}_2 = \emptyset$. \triangleright storing normalized heavy edge matching 5: Sort V_{i-1} by the number of neighbors in ascending order. 6: for $v \in V_{i-1}$ do

- 7: if v and u are not matched and $u \in \text{Neighbors}(v)$ then
- 8: $(v, u) \leftarrow$ the normalized heavy edge matching for v.

9:
$$\mathcal{M}_2 = \mathcal{M}_2 \cup (v, u)$$
, and mark both as matched.

- 10: Compute matching matrix $M_{i-1,i}$ based on \mathcal{M}_1 and \mathcal{M}_2 .
- 11: Derive the adjacency matrix A_i for \mathcal{G}_i using Eq. 2.

12: Return graph \mathcal{G}_i and matching matrix $M_{i-1,i}, \forall i \in [1,m]$.

・ロ・ ・ 四・ ・ ヨ・ ・

Introduction

2 MILE

- Graph Coarsening
- Base Embedding
- Embeddings Refinement

3 Results

4 Conclusions

Credit: Jiongqian Liang, Saket Gurukar, SriniMILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdat

▶ ∢ ∃ ▶

- After coarsening the graph for *m* iterations, apply graph embedding *f* on coarsest graph *G_m*
- Agnostic to graph embedding method: can use any embedding algorithm
- They tried DeepWalk, Node2Vec, GraRep, and NetMF

Introduction

2 MILE

- Graph Coarsening
- Base Embedding
- Embeddings Refinement

3 Results

4 Conclusions

Credit: Jiongqian Liang, Saket Gurukar, SriniMILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdat

▶ ∢ ∃ ▶

- Need to derive embeddings E for G_0 from G_m
- Infer embeddings E_i from E_{i+1}
- Projected embeddings:

$$E_i^p = M_{i,i+1}E_{i+1}$$

- Embedding of super-node copied to original nodes
- Nodes will share same embeddings

Graph Convolution Network

• Graph convolution:

$$X *_{G} g = U \theta_{g} U^{T} X$$

θ: Spectral multipliers, U: eigenvectors of normalized Laplacian
Fast approximation:

$$X *_{G} g \approx \tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} X \Theta$$

•
$$\tilde{A} = A + \lambda D$$
, $\tilde{D}(i, i) = \sum_{j} \tilde{A}(i, j)$

- λ hyper-parameter
- Θ trainable weight

• Refine embeddings using graph convolution network

$$E_i = R(E_i^p, A_i) = H^{(I)}(E_i^p, A_i)$$
$$H^{(k)}(X, A) = \sigma(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}H^{(k-1)}(X, A)\Theta^{(k)})$$

Credit: Jiongqian Liang, Saket Gurukar, Srini MILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdat

3 × < 3 ×

э

- We can run base embedding on *G_i* to generate "ground-truth" embeddings for training loss
- Learn $\Theta^{(k)}$ on coarsest graph and reuse them across all levels
- Use base embedding on coarsest graph to get ground truth embeddings $E_m = f(G_m)$
- Further coarsen G_m to G_{m+1} and get another embedding $E_{m+1} = f(G_{m+1})$
- Predict $R(E_m^p, A_m) = H^{(I)}(M_{m,m+1}E_{m+1}, A_m)$
- Loss:

$$L = \frac{1}{|V_m|} \left\| E_m - H^{(l)}(M_{m,m+1}E_{m+1}, A_m) \right\|^2$$

• Problems with "double-base" embedding

- Requires extra coarsening and base embedding
- Embeddings may not be comparable since learned independently
- Better method:
 - Copy G_m , eliminate extra coarsening and embedding

•
$$E_{m+1} = E_m$$

 $L = \frac{1}{|V_m|} \left\| E_m - H^{(I)}(E_m, A_m) \right\|^2$

Algorithm 2 Multi-Level Algorithm for Graph Embedding

Input: A input graph $\mathcal{G}_0 = (V_0, E_0)$, # coarsening levels m, and a base embedding method $f(\cdot)$.

Output: Graph embeddings \mathcal{E}_0 on \mathcal{G}_0 .

- 1: Use Algorithm 1 to coarsen \mathcal{G}_0 into $\mathcal{G}_1, \mathcal{G}_2, ..., \mathcal{G}_m$.
- 2: Perform base embedding on the coarsest graph \mathcal{G}_m (See Eq. 3).
- 3: Learn the weights $\Theta^{(k)}$ using the loss function in Eq. 10.
- 4: for i = (m 1)...0 do
- 5: Compute the projected embeddings \mathcal{E}_i^p on \mathcal{G}_i using Eq. 4.
- 6: Use Eq. 7 and Eq. 8 to compute refined embeddings \mathcal{E}_i .
- 7: Return graph embeddings \mathcal{E}_0 on \mathcal{G}_0 .

Introduction

2 MILE

- Graph Coarsening
- Base Embedding
- Embeddings Refinement

3 Results

4 Conclusions

Credit: Jiongqian Liang, Saket Gurukar, SriniMILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdat

∃ ► < ∃ ►</p>

Dataset	# Nodes	# Edges	# Classes
PPI	3,852	37,841	50
Blog	10,312	333,983	39
Flickr	80,513	$5,\!899,\!882$	195
YouTube	1,134,890	2,987,624	47
Yelp	8,938,630	39,821,123	22

Table 2: Dataset Information

Credit: Jiongqian Liang, Saket Gurukar, Srini MILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdat

∃ ► < ∃ ►

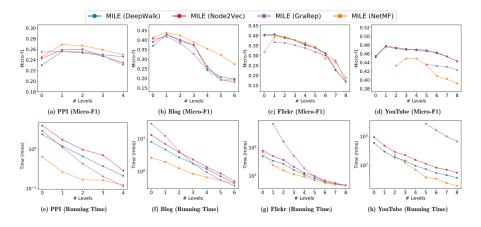


Figure: Performance of different methods and number of levels

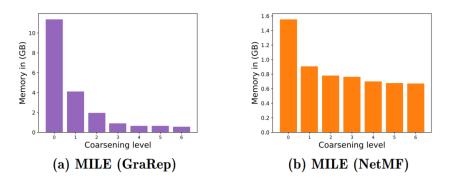


Figure: Memory consumption

Introduction

2 MILE

- Graph Coarsening
- Base Embedding
- Embeddings Refinement

3 Results

Credit: Jiongqian Liang, Saket Gurukar, SriniMILE: A Multi-Level Framework for Scalable Presenter: Ryan McCampbell https://qdat

∃ ► < ∃ ►</p>

- MILE is:
 - scalable
 - improves embedding quality
 - supports multiple embedding strategies
- This makes graph learning applicable to much broader and more interesting applications