Neural Network-based Graph Embedding for Cross-Platform Binary Code Similarity Detection

Author: Xiaojun Xu

Shanghai Jiao Tong University

Presenter: Faizan Ahmad

https://qdata.github.io/deep2Read
Outline

1. Introduction
2. Related Work
3. Gemini
4. Evaluation and Results
5. Takeaways
Binary Code \rightarrow Decompiled assembly code

Code Similarity \rightarrow Comparing two *functions semantically*

Why cross-platform \rightarrow Plethora of platforms these days - differences in compilation
 - Different operating systems
 - Different compilers
 - Different optimization techniques

Why Binary? \rightarrow Source code is seldom available, hence the tendency towards binary analysis
Related Work

Graph Matching

- Pairwise Graph Matching [1] [2]
 - Convert functions into control flow graphs (CFG)
 - Match two graphs using graph matching algorithms
 - **Problems?** Ineffective and computationally very expensive

Figure: Control Flow Graph
Graph Embeddings - **(Genius)** [3]
- Convert each function into a CFG
- Train graph neural networks.
- **Problems?** How to get labeled data for similar codes?

Figure: Control Flow Graph
Figure: **Training** Gemini - *Siamese* Graph Neural Network Architecture
Figure: Gemini Testing - Siamese Graph Neural Network Architecture
Gemini
Structure2vec GNN Model

Algorithm 1 Graph embedding generation

1: **Input:** ACFG $g = \langle \mathcal{V}, \mathcal{E}, \mathcal{x} \rangle$
2: Initialize $\mu_v^{(0)} = \overline{0}$, for all $v \in \mathcal{V}$
3: **for** $t = 1$ **to** T **do**
4: **for** $v \in \mathcal{V}$ **do**
5: $l_v = \sum_{u \in N(v)} \mu_u^{(t-1)}$
6: $\mu_v^{(t)} = \tanh(W_1 x_v + \sigma(l_v))$
7: **end for**
8: **end for**{fixed point equation update}
9: return $\phi(g) := W_2(\sum_{v \in \mathcal{V}} \mu_v^{(T)})$

Figure: Gemini uses Structure2vec [3] as the GNN model
Gemini
Node Attributes

(a) Partial control flow graph of dTLS1_process_heartbeat
(a) Partial control flow graph of `dltls1_process_heartbeat`

(b) The corresponding ACFG

```
mov [esp+4Ch+var_40], edi  
mov [esp+4Ch+n], 18h  
mov [esp+4Ch+var_3C], edx  
mov edx, [esi]  
mov [esp+4Ch+dest], 0  
call eax

loc_80C1B2B:  
cmp bp, 1  
jz short loc_80C1B88

xor eax, eax  
cmp bp, 2  
jz short loc_80C1B48

loc_80C1B48:  
cmp ebx, 12h  
movzx edx, byte ptr [edi+3]  
movzx ecx, byte ptr [edi+4]  
jnz short loc_80C1B39

lea eax, [ebx+13h]  
...

mov [esp+4Ch+src], offset aD1_both_c  
mov [esp+4Ch+dest], eax  
mov [esp+4Ch+var_24], eax  
call CRYPTO_malloc  
...

mov [esp+4Ch+dest], ecx; dest  
mov [esp+4Ch+src], edi; src  
mov [esp+4Ch+var_20], ecx  
call _memcpy  
mov ecx, [esp+4Ch+var_20]
```
Node Attributes

- Function \rightarrow basic blocks (node)
- Node features are extracted from basic blocks

<table>
<thead>
<tr>
<th>Type</th>
<th>Attribute name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block-level attributes</td>
<td>String Constants</td>
</tr>
<tr>
<td></td>
<td>Numeric Constants</td>
</tr>
<tr>
<td></td>
<td>No. of Transfer Instructions</td>
</tr>
<tr>
<td></td>
<td>No. of Calls</td>
</tr>
<tr>
<td></td>
<td>No. of Instructions</td>
</tr>
<tr>
<td></td>
<td>No. of Arithmetic Instructions</td>
</tr>
<tr>
<td>Inter-block attributes</td>
<td>No. of offspring</td>
</tr>
<tr>
<td></td>
<td>Betweenness</td>
</tr>
</tbody>
</table>

Table 1: Basic-block attributes
Evaluation and Results

Dataset Creation

- Complete source code of OpenSSL
- Compiled with three architectures
 - x86
 - MIPS
 - ARM
- 129,365 control flow graphs

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Validation</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>x86</td>
<td>30,994</td>
<td>3,868</td>
<td>3,973</td>
</tr>
<tr>
<td>MIPS</td>
<td>41,477</td>
<td>5,181</td>
<td>5,209</td>
</tr>
<tr>
<td>ARM</td>
<td>30,892</td>
<td>3,805</td>
<td>3,966</td>
</tr>
<tr>
<td>Total</td>
<td>103,363</td>
<td>12,854</td>
<td>13,148</td>
</tr>
</tbody>
</table>

Figure: CFGs in data set
Evaluation and Results

Comparison Methods

- Bipartite Graph Matching (BGM)
- Genius - Embeddings based on GNNs [3]
 - Labels are created based on graph matching - **not good!**
- Gemini (Uses Structure2Vec [3] as the GNN model)
Does our labeling methodology work for all tasks? NO!
- Vulnerability detection - we want the semantics to match
- Plagiarism detection - we want to syntax to match too

Solution?
- Pretrain on larger data set
- Retrain on a smaller fine grained data set
Results

ROC Curves

Figure 5: ROC curves for different approaches evaluated on the testing similarity dataset.
Results

Ablation Analysis

(d) ROC versus embedding size p.

(e) ROC versus ACFG attributes.

(f) ROC versus no. of iterations T.
Figure 8: Visualizing the embeddings of the different functions using t-SNE. Each color indicates one source functions. The legend provides the source function names.
Results
Retraining

- Pretrain on a large data set
- Retrain on a vulnerable code dataset
- Test on a held-out set of vulnerable codes
 - 50 or 100 most similar functions based on code similarity

Results \rightarrow 80% precision as compared with 35% from Genius.
Takeaways

- Graph based approaches for program analysis often work well
- Pretraining before retraining is a nice way around data scarcity
- Again, huge implications for vulnerability analysis
