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Motivation

Whole Graph Classification

- Protein classification

- Social networks

Most current GNN graph classification methods are flat
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Prior Work

Graph Classification through node embeddings

- No representation of hierarchical structure

Hierarchical structure recognized

- Hierarchy not learned, used deterministic graph clustering algos

Rex Ying, Jure Lescovec et. al (UCLA) DiffPool https://qdata.github.io/deep2Read 4 / 16

https://qdata.github.io/deep2Read


Novel Idea

Learning the Hierarchical Structure of Graphs to Improve Representation

DiffPool enables the construction of deep, multi-layer GNN models by
providing a differentiable module to hierarchically pool graph nodes for use
with existing GNN techniques.
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Graph Neural Nets

Message Passing

H(k) = M(A,H(k−1); Θ(k))

M according to GCN:

M(A,H(k−1); Θ(k)) = ReLU(D̃−1/2ÃD̃−1/2H(k−1)W (k−1))

Where Hk ∈ Rn×d

Ã = A + I
D̃ =

∑
j Ãij

W k ∈ Rd×d is a trainable weight matrix
For this paper, Z = HK = GNN(A,X )
For some adjacency matrix A and node features X
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Stacking GNNs

Goal: Define a general, end-to-end differentiable strategy that allows one
to stack multiple GNN modules in a hierarchical fashion.

Formally, given Z = GNN(A,X ), the output of a GNN module, and a
graph adjacency matrix A ∈ Rn×n,
DiffPool outputs a new coarsened graph containing m < n nodes, with
weighted adjacency matrix A ∈ Rm×m and node embeddings Z ′ ∈ Rm×d

Can be repeated L times to generate a model with L GNN layers that
operate on a series of coarser and coarser versions of the input graph.
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Pooling With an Assignment Matrix

Given S (l) ∈ Rnl×nl+1

X (l+1) = S (l)TZ (l) ∈ Rnl+1×d

A(l+1) = S (l)TA(l)S (l) ∈ Rnl+1×nl+1

Each row of S (l) corresponds to one of the nl nodes (or clusters) at layer l ,
and each column of S (l) corresponds to one of the nl+1 clusters at the
next layer l + 1. Intuitively, S (l) provides a soft assignment of each node
at layer l to a cluster in the next coarsened layer l + 1.
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Learning the Assignment Matrix

Learn S (l) and Z (l) with two separate GNNs applied over the same input

Z (l)

Z (l) = GNNl ,embed(A(l),X (l)

Z (l) represents new embeddings for the input nodes at this layer.

S (l)

S (l) = softmax(GNNl ,pool(A
(l),X (l)))

S (l) represents probabalistic assignments of the input nodes to nl+1

clusters.
Output dimension nl+1 is a hyperparameter
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Learning the Assignment Matrix

Full graph representation: At the penultimate layer L− 1 of a deep
GNN model using DIFFPOOL, the assignment matrix S (L−1) is set to be a
vector of 1’s, such that all nodes at the final layer L are assigned to a
single cluster, generating a final embedding vector corresponding to the
entire graph.
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Goals

Q1: How does DIFFPOOL compare to other pooling methods
proposed for GNNs?

Q2: How does DIFFPOOL combined with GNNs compare to the
state-of-the-art for graph classification task, including both GNNs and
kernel-based methods?

Q3: Does DIFFPOOL compute meaningful and interpretable clusters
on the input graphs?
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Experiments

Datasets

1 Proteins

2 Enzymes

3 D&D (another protein
identification)

4 Reddit

5 Collab (Scientific
collaboration set)

Model Details

1 GraphSage used as GNN model
integrated with DiffPool

- DiffPool layer after every 2
GraphSage layers, and only 2
DiffPool layers total

2 Every DiffPool layer sets the
number of clusters to 25% of
the incoming nodes.
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Results
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Conclusions

Allowing the GNN to learn embeddings with hierarchical information
can greatly improve results on graph classification tasks

Can be easily used to augment existing ”flat” GNN techniques

Invariant under node permutations as long as the component GNN is
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The End
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