Hierarchical Graph Representation Learning with Differentiable Pooling

Rex Ying, Jure Lescovec et. al

Presented by Eamon Collins

ec3bd@virginia.edu

https://qdata.github.io/deep2Read

Motivation

2 Prior Work

4 Stacking GNNs

- Pooling With an Assignment Matrix
- Learning the Assignment Matrix

5 Experiments and Results

Motivation

- Whole Graph Classification
 - Protein classification
 - Social networks
- Most current GNN graph classification methods are flat

- Graph Classification through node embeddings
 - No representation of hierarchical structure
- Hierarchical structure recognized
 - Hierarchy not learned, used deterministic graph clustering algos

Learning the Hierarchical Structure of Graphs to Improve Representation

DiffPool enables the construction of deep, multi-layer GNN models by providing a differentiable module to hierarchically pool graph nodes for use with existing GNN techniques.

Message Passing

$$H^{(k)} = M(A, H^{(k-1)}; \Theta^{(k)})$$

M according to GCN:

$$M(A, H^{(k-1)}; \Theta^{(k)}) = ReLU(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}H^{(k-1)}W^{(k-1)})$$

Where $H^k \in \mathbb{R}^{n \times d}$ $\tilde{A} = A + I$ $\tilde{D} = \sum_j \tilde{A}_{ij}$ $W^k \in \mathbb{R}^{d \times d}$ is a trainable weight matrix For this paper, $Z = H^K = GNN(A, X)$ For some adjacency matrix A and node features X

Stacking GNNs

Goal: Define a general, end-to-end differentiable strategy that allows one to stack multiple GNN modules in a hierarchical fashion.

Formally, given Z = GNN(A, X), the output of a GNN module, and a graph adjacency matrix $A \in \mathbb{R}^{n \times n}$, DiffPool outputs a new coarsened graph containing m < n nodes, with weighted adjacency matrix $A \in \mathbb{R}^{m \times m}$ and node embeddings $Z' \in \mathbb{R}^{m \times d}$

Can be repeated L times to generate a model with L GNN layers that operate on a series of coarser and coarser versions of the input graph.

Given $S^{(I)} \in \mathbb{R}^{n_l \times n_{l+1}}$

$$X^{(l+1)} = S^{(l)T} Z^{(l)} \in \mathbb{R}^{n_{l+1} \times d}$$
$$A^{(l+1)} = S^{(l)T} A^{(l)} S^{(l)} \in \mathbb{R}^{n_{l+1} \times n_{l+1}}$$

Each row of $S^{(I)}$ corresponds to one of the n_l nodes (or clusters) at layer I, and each column of $S^{(I)}$ corresponds to one of the n_{l+1} clusters at the next layer l+1. Intuitively, $S^{(I)}$ provides a soft assignment of each node at layer l to a cluster in the next coarsened layer l+1.

Learn $S^{(l)}$ and $Z^{(l)}$ with two separate GNNs applied over the same input

$Z^{(I)}$

$$Z^{(l)} = GNN_{l,embed}(A^{(l)}, X^{(l)})$$

 $Z^{(l)}$ represents new embeddings for the input nodes at this layer.

$S^{(I)}$

$$S^{(l)} = softmax(GNN_{l,pool}(A^{(l)}, X^{(l)}))$$

 $S^{(l)}$ represents probabalistic assignments of the input nodes to n_{l+1} clusters.

Output dimension n_{l+1} is a hyperparameter

< 同 > < 三 > < 三 >

Full graph representation: At the penultimate layer L - 1 of a deep GNN model using DIFFPOOL, the assignment matrix $S^{(L-1)}$ is set to be a vector of 1's, such that all nodes at the final layer L are assigned to a single cluster, generating a final embedding vector corresponding to the entire graph.

- Q1: How does DIFFPOOL compare to other pooling methods proposed for GNNs?
- Q2: How does DIFFPOOL combined with GNNs compare to the state-of-the-art for graph classification task, including both GNNs and kernel-based methods?
- Q3: Does DIFFPOOL compute meaningful and interpretable clusters on the input graphs?

Datasets

- Proteins
- 2 Enzymes
- D&D (another protein identification)
- In the second second
- Collab (Scientific collaboration set)

Model Details

- GraphSage used as GNN model integrated with DiffPool
 - DiffPool layer after every 2 GraphSage layers, and only 2 DiffPool layers total
- Every DiffPool layer sets the number of clusters to 25% of the incoming nodes.

	Mathad	Data Set						
	Method	ENZYMES	D&D	Reddit-Multi-12k	COLLAB	PROTEINS	Gain	
Kernel	GRAPHLET	41.03	74.85	21.73	64.66	72.91		
	SHORTEST-PATH	42.32	78.86	36.93	59.10	76.43		
	1-WL	53.43	74.02	39.03	78.61	73.76		
	WL-OA	60.13	79.04	44.38	80.74	75.26		
	PATCHYSAN	_	76.27	41.32	72.60	75.00	4.17	
GNN	GRAPHSAGE	54.25	75.42	42.24	68.25	70.48	_	
	ECC	53.50	74.10	41.73	67.79	72.65	0.11	
	Set2set	60.15	78.12	43.49	71.75	74.29	3.32	
	SORTPOOL	57.12	79.37	41.82	73.76	75.54	3.39	
	DIFFPOOL-DET	58.33	75.47	46.18	82.13	75.62	5.42	
	DIFFPOOL-NOLP	61.95	79.98	46.65	75.58	76.22	5.95	
	DiffPool	62.53	80.64	47.08	75.48	76.25	6.27	

æ

Conclusions

- Allowing the GNN to learn embeddings with hierarchical information can greatly improve results on graph classification tasks
- Can be easily used to augment existing "flat" GNN techniques
- Invariant under node permutations as long as the component GNN is

	Method	Data Set					
Kernel		ENZYMES	D&D	Reddit-Multi-12k	COLLAB	PROTEINS	Gain
	GRAPHLET	41.03	74.85	21.73	64.66	72.91	
	SHORTEST-PATH	42.32	78.86	36.93	59.10	76.43	
	1-WL	53.43	74.02	39.03	78.61	73.76	
	WL-OA	60.13	79.04	44.38	80.74	75.26	
GNN	PATCHYSAN	_	76.27	41.32	72.60	75.00	4.17
	GRAPHSAGE	54.25	75.42	42.24	68.25	70.48	_
	ECC	53.50	74.10	41.73	67.79	72.65	0.11
	Set2set	60.15	78.12	43.49	71.75	74.29	3.32
	SortPool	57.12	79.37	41.82	73.76	75.54	3.39
	DIFFPOOL-DET	58.33	75.47	46.18	82.13	75.62	5.42
	DIFFPOOL-NOLP	61.95	79.98	46.65	75.58	76.22	5.95
	DIFFPOOL	62.53	80.64	47.08	75.48	76.25	6.27

▲ロト▲御ト▲臣ト▲臣ト 臣 のの()

. N. Kipf and M. Welling.

Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations, 2017.

. Li, D. Tarlow, M. Brockschmidt, and R. Zemel.

Gated graph sequence neural networks.

International Conference on Learning Representations, 2016.

The End

э

A D N A B N A B N A B N