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Introduction

@ Real world data often comes naturally as graphs
e Social networks
o Gene expression
e Knowledge graphs
@ Graph-based learning tasks
o Node classification
e Link prediction
@ Recent work: extending popular network architectures to graphs

o RNNs
o CNNs
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Graph Convolutions

@ Node feature representation
HUHY = o(AHO W)

@ A: adjacency matrix
o W: parameter matrix

@ o: nonlinearity
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Graph Convolutions

@ Transductive: embeddings computed for both train and test data
simultaneously

o Test data might not be available
@ Bigger problem: recursive expansion of neighborhoods across layers

e Particularly bad for dense graphs
o Makes minibatch training non-scalable
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o ldea: Idea: interpret vertices as iid samples of a probability
distribution

@ Treat loss and convolution layers as integral transforms of embedding
functions

@ Evaluate integrals through Monte Carlo approximation to get sample
gradient
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Related Work

@ Spectral graph theory: whole graph feature representation
@ Graph vertex embeddings
e Matrix factorization based

e Random walk based
e Graph convolution (GCN)

o GraphSAGE
e Learns node representations through aggregation of neighborhood

information Use sampling to restrict neighborhood size
e Distinction: This paper samples vertices rather than neighbors
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Integral Transform

@ For graphs: can't use independence to compute sample gradients

@ Assume possibly infinite graph G’ s.t. G is subgraph of G’ and its
vertices are iid samples of V'’ with probability distribution P

AU = AHOWO) | H = o(A), Zg HM)(

1
FHD(v) = / A(v, )l ()W dP(u), h = o(h),

L= E,_plg(hM(v)] = / (M) (v))dP(v)
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Integral Transform
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Graph convolution view Integral transform view
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Monte Carlo Estimation
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@ For each layer /, use t; iid samples Uy,
integral:

~ P to approximate the
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In practice

@ Use bootstrapping: for each batch, sample uniformly with

()

replacement each layer to obtain u;
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Algorithm

Algorithm 1 FastGCN batched training (one epoch)

1: for each batch do
2: For each layer [/, sample uniformly #; vertices u( ) RPN 7 “)
3: for each layer [ do D Compute batch gradient V Liych
4: If v is sampled in the next layer,
ty
(1 n 1), (1 A1
VA (0,0 > A u) e {HO W, WO}
j=1
3: end for
6: W « W — 9V Lyatch > SGD step
7: end for
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Variance Reduction

@ Use importance sampling
o Let Q(U) be new probability distribution

dQ(u) = fbé”) 35;”) b(u) = [ / Av, u)2dP(v)]2

@ Discretized: )
IA(:, u)l

W)= 5= L IAG P
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Algorithm

Algorithm 2 FastGCN batched training (one epoch), improved version

1: For each vertex u, compute sampling probability q(u) o || A(:, )|

2: for each batch do

3: For each layer [, sample #; vertices u(ll), cees ug) according to distribution q

4 for each layer [ do > Compute batch gradient V Ly,
5 If v is sampled in the next layer,

1 I
1oL A u)

VAT (1, ) V{H(”(ug”.:)W“)}

1
Ch= i)
6: end for
7: W +— W — 1V Lvatch > SGD step
8: end for
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Inference

Test data separated from training data
Either compute test embeddings using full GCN architecture

Or approximate them through sampling as for parameter learning

Paper uses full architecture for inference
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Comparison with GraphSAGE

@ GCN and GraphSAGE both have bottleneck caused by recursive
neighborhood expansion

@ GraphSAGE restricts neighborhood size for each layer: in worst case,
Oo(IT)
o FastGCN samples vertices rather than neighbors in each layer:

o(_t)
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Table 1: Dataset Statistics

Dataset ~ Nodes Edges Classes Features  Training/Validation/Test
Cora 2,708 5,429 7 1,433 1,208/500/1. 000
Pubmed 19,717 44,338 3 500 18,217/500/1, 000
Reddit 232,965 11,606,919 41 602 152,410/23,699/55, 334
IFastGCN ]
0° ESE‘.‘:“S"GE Micro F1 Score
Cora Pubmed Reddit
FastGCN 0.850  0.880  0.937

GraphSAGE-GCN  0.829  0.849 0.923
— GraphSAGE-mean  0.822  0.888 0.946
GCN (batched) 0.851  0.867 0.930
GCN (original) 0.865  0.875 NA
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Figure: Per-batch training time and prediction accuracy
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Figure: Comparison between uniform and importance sampling
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Conclusions

@ This largely solves the problem of dimensionality in large graphs
without sacrificing accuracy

o It Generalizes to inductive learning on graphs with continuously
changing nodes

@ It shows that the receptive field does not have to increase for more
distant nodes to provide reasonable accuracy
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