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Graph Neural Network
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How powerful are graph neural networks?

How powerful are graph neural networks? Keyulu Xu, Weihua Hu,
Jure Leskovec, Stefanie Jegelka, ICLR 2019 [XHLJ18]

GNN is weaker than Weisfeiler-Lehman graph isomorphism test

GNN cannot learn to distinguish certain types

Propose an architecture that is provably as powerful as WL test.
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GNN definition

GNN layer
The k-th layer of a GNN is:

a
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v = AGGREGATE(k)
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u : u ∈ N (v)

})
h

(k)
v = COMBINE(k)

(
h

(k−1)
v , a

(k)
v

)
,

GraphSage - Maxpooling variant[HYL17]
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GCN[KW16]

h
(k)
v = ReLU

(
W ·MEAN
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Graph classification via GNN

For graph classification, an additional step for GNN is to combine the
embedding of all the nodes together:

hG = READOUT
({

h
(K)
v

∣∣ v ∈ G
})
.

READOUT can be a simple permutation invariant function such as
summation or a more sophisticated graph-level pooling function.
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Graph Isomorphism

Graph Isomorphism: Graph G1 = (V1,E1) and G2 = (V2,E2) are
isomorphic graphs if a permutation p of V1 makes G1 equals G2:
Any (u, v) ∈ E1 has (p(u), p(v)) ∈ E2

Verify graph isomorphism is NP, somewhere between P and
NP-Complete.
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Graph Isomorphism Example
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Graph Isomorphism Example
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Weisfeiler-Lehman Test

Weisfeiler-Lehman Test is a subtree-based method to solve
graph-isomorphic problem.

Weisfeiler-Lehman Test

Initialize all nodes with some node features, or with same label 1.

Iteratively:
1 Aggregates the labels of nodes and their neighborhoods.
2 Hashes the aggregated labels into unique new labels.
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Weisfeiler-Lehman Test

From https://www.slideshare.net/pratikshukla11/graph-kernelpdf:
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WL Test and GNN

In the GraphSage paper, the authors claim that WL Test is one
special case of GraphSage, only the hashing algorithm is replaced with
trainable aggregation function.

However, as shown in this paper, common aggregators such as
mean-pooling/max-pooling is weaker than the hash function.
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WL Test is stronger than GNN

Lemma: Let G1 and G2 be any two non-isomorphic graphs. If a graph
neural network A : G → RD maps G1 and G2 to different
embeddings, the Weisfeiler-Lehman graph isomorphism test also
decides G1 and G2 are not isomorphic.

(Assume the hashing function is extremely powerful.)
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How to make GNN powerful?

Theorem
Let A : G → Rd be a GNN. With a sufficient number of GNN layers, A maps any graphs G1 and
G2 that the Weisfeiler-Lehman test of isomorphism decides as non-isomorphic, to different
embeddings if the following conditions hold:

a) A aggregates and updates node features iteratively with

h
(k)
v = φ

(
h

(k−1)
v , f

({
h

(k−1)
u : u ∈ N (v)

}))
,

where the functions f , which operates on multisets, and φ are injective (1-1 function).

b) A’s graph-level readout, which operates on the multiset of node features
{
h

(k)
v

}
, is

injective.

Conclusion: The problem is in the aggregation function (and the
readout function).
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How to make GNN powerful?

Idea is simple and straightforward, however,
sum/max-pooling/mean-pooling are not injective on multiset.

The authors model the aggregator with a neural network:

Graph Isomorphism Network(GIN)

A GIN layer is defined as:

h
(k)
v = MLP(k)

((
1 + ε(k)

)
· h(k−1)

v +
∑

u∈N (v)
h

(k−1)
u

)
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GIN Guarantees

Theorem
Assume X is countable. There exists a function f : X → Rn so that h(X ) =

∑
x∈X f (x) is

unique for each multiset X ⊂ X of bounded size. Moreover, any multiset function g can be
decomposed as g (X ) = φ

(∑
x∈X f (x)

)
for some function φ.

Lemma
Assume X is countable. There exists a function f : X → Rn so that for infinitely many choices
of ε, including all irrational numbers, h(c,X ) = (1 + ε) · f (c) +

∑
x∈X f (x) is unique for each

pair (c,X ), where c ∈ X and X ⊂ X is a multiset of bounded size. Moreover, any function g
over such pairs can be decomposed as g (c,X ) = ϕ

(
(1 + ε) · f (c) +

∑
x∈X f (x)

)
for some

function ϕ.

By these two conditions, GIN is as generalize as WL test with a proper
MLP φ learned and a proper ε choose.
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Graph classification Readout of GIN

GIN use a readout that loads the input on every layers:

hG = CONCAT
(
READOUT

({
h

(k)
v |v ∈ G

}) ∣∣ k = 0, 1, . . . ,K
)
.
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Study on the variants

1-layer perceptions are not sufficient.

Mean and Max-pooling are not good enough (With counter-examples
above).

Mean pooling is better for tasks with diverse and rarely repeat
features, and max pooling is better for catching a general relationship.
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Experiment

Use 9 datasets

Methods in comparison:

GIN-0: ε is always 0
GIN-ε: ε is also updated by gradient in the training
SVM
DCNN
DGCNN
AWL
GraphSage-Mean
GCN
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Experiment result
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Deeper Insights into Graph Convolutional Networks for
semi-supervised learning

Deeper Insights into Graph Convolutional Networks
forsemi-supervised learning Qimai Li, Zhichao Han, Xiaoming Wu, AAAI
2018 [LHW18]

GCN performance doesn’t increase with number of layers, which
contradicts its design logic

To overcome this problem(Stay with shallow architecture), use
co-training and self-training to improve its performance.
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GCN formula

GCN

A GCN layer is defined as:

H(k+1) = σ(D̃−
1
2 ÃD̃−

1
2H(k)W (k))

GCN adds a self-loop to every nodes in the graph.

The hidden vector of a node is updated by a weighted average of
itself and its neighbors.

Laplacian smoothing
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When GCN fails

Generate a 2 dimension vector on every vertex on a small dataset

Repeatedly apply Laplacian smoothing to the graph will cause it mix
together again

Theorem: The result of Laplacian smoothing will converge to D−
1
21θ

if the graph has no bipartite components.
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Issues of GCN

GCN used in [KW16] has only 2 layers. However, GCN suppose to be
a localize filter, which means it doesn’t propagate the information to
the whole graph.

Example: If you don’t have a near neighbor with label, GCN won’t
work.

Authors also claim that ”GCN relies on additional large validation set
to select the model, as hyperparameter is crucial.”
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Co-train a GCN with Random Walk Model

Idea: Random Walk can explore global graph structure, which is
complementary to the GCN result.

In particular, use random walk model to provide extra labels for GCN
to make prediction.

Calculate the random walk absorbing probabilities matrix

Algorithm:

Presenter: Ji Gao https://qdata.github.io/deep2ReadTwo papers on GNN theory: How Power are GNN and Deeper Insight of GCN SemisupervisedJune 3, 2019 25 / 30

https://qdata.github.io/deep2Read


GCN self-training

Train it again
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Experiment

Data: Cora, Citeseer and Pubmed

Methods in comparison:
Label propagation via random walk(LP)
ChebyNet
GCN: With or without validation set.
Co-training
Self-training
Co-training set union/intersect Self-training set
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Experiment Result
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Experiment result II
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