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Overview

Graph matching: establishing correspondences between two graphs
represented in terms of both local node structure and pair-wise
relationships

This paper: graph matching where the unary and pairwise structures
are deep feature representation with trainable parameters
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Problem Formulation

Given: two input graphs G1 = (V1, E1) and G2 = (V2, E2), with
|V1| = n and |V2| = m

Graph Matching Goal: minimize some loss between the
corresponding nodes and edges of the two graphs
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Graph Matching

Let v ∈ {0, 1}nm be an indicator vector s.t. via = 1 if i ∈ V1 is
matched to a ∈ V2 and 0 otherwise

Let M ∈ Rnm×nm be an affinity matrix that encodes similarities
between unary and pairwise sets of nodes (points) in the two graphs

Mia;jb measures how well every pair (i , j) ∈ E1 matches with (a, b) ∈ E2

The diagonal entries contain node-to-node scores, whereas the
off-diagonal entries contain edge-to-edge scores.

The optimal assignment v∗ can be formulated as

v∗ = arg max
v

vᵀMv

s.t. Cv = 1, v ∈ {0, 1}nm

where binary matrix Cv ∈ Rnm×nm encodes one-to-one mapping
constraints: ∀i

∑
a aia = 1 and ∀a

∑
i via = 1.
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Graph Matching

This is known to be NP-hard, so we relax the problem by dropping
both the binary and the mapping constraints, and solve

v∗ = arg max
v

vᵀMv

s.t. ||v||2 = 1

The optimal v∗ is given by the leading eigenvector of the matrix M

Since M has non-negative elements, the elements of v∗ are in the
interval [0, 1], and we interpret v∗ia as the confidence that i matches a.
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End-to-End Graph Matching Learning

Estimate the affinity matrix M parameterized in terms of unary and
pair-wise point features computed over input images

Learn the feature hierarchies end-to-end in a loss function that also
integrates the matching layer.

Specifically, given a training set of correspondences between pairs of
images, we adapt the parameters so that the matching minimizes the
error, measured as a sum of distances between predicted and ground
truth correspondences.
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Pipeline
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Deep Feature Extractor
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Affinity Matrix Layer

Affinity matrix encodes the similarities between unary and pairwise sets of
nodes (points) in the two graphs
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Affinity Matrix Factorization

Factorization of the matrix M: exposes the graph structure of the two
graphs jointly (the unary and pairwise scores between nodes and
edges, respectively)

M = [vec(Mp)] + (G2 ⊗ G1)[vec(Me)](H2 ⊗H1)ᵀ (1)

where [x ] is the diagonal matrix of x , and ⊗ is the Kronecker product

Zanfir and SminchisescuCVPR 2018 Deep Learning of Graph Matching Presenter: Jack Lanchantin https://qdata.github.io/deep2Read 13 / 31

https://qdata.github.io/deep2Read


Affinity Matrix Layer

M = [vec(Mp)] + (G2 ⊗ G1)[vec(Me)](H2 ⊗H1)ᵀ

G1,H1,G2,H2 describe the structure of each graph as node-edge
incidence matrices, e.g. G1,H1 ∈ {0, 1}n×p, where gic = hjc = 1 if
the cth edge starts from the i th node and ends at the j th node.

If we define the node-to-node adjacency matrices A1 ∈ {0, 1}n×n,
A2 ∈ {0, 1}m×m, then A1 = G1Hᵀ

1,A2 = G2Hᵀ
2
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Affinity Matrix Factorization

M = [vec(Mp)] + (G2 ⊗ G1)[vec(Me)](H2 ⊗H1)ᵀ

Mp ∈ Rn×m represents the 1st-order terms (node-to-node similarities)

Me ∈ Rp×q represents the 2nd -order potentials (edge-to-edge
similarity), where p and q are the numbers of edges in G1,G2

One simple way to build Mp and Me is:

Mp = U1Uᵀ
2,Me = XΛY (2)

where X ∈ Rp×2d and Y ∈ Rq×2d are per-edge feature matrices, and
Xc = [F1

i |F1
j ],Yc = [F2

i |F2
j ] represent the cth edge b/w node i and j
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Affinity Matrix Layer
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Power Iteration Layer
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Power Iteration Layer

Computing the leading eigenvector v∗ of the affinity matrix M can be
done using power iterations

vk+1 =
Mvk
||Mvk ||2

(3)

where we initialize v0 = 1

We run the assignment from Eq 3 for N iterations, and output the
vector v∗ = vN .
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Bi-Stochastic Layer
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Bi-Stochastic Layer

Make the result of the power iteration layer bi-stochastic which means
mapping the eigenvector v∗ onto the L1 constraints of the matching
problem ∀i

∑
a aia = 1 and ∀a

∑
i via = 1.

Takes as input vector v∗ ∈ Rnm, reshaped to a matrix of size n ×m,
and outputs the bi-stochastic matrix S

Given a starting matrix S0 = (v∗)n×m, we run the following
assignments for a number of iterations

Sk+1 = Sk [1ᵀ
nSk ]−1,Sk+2 = [Sk+11−1

m ]Sk (4)
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Voting Layer
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Voting Layer
Converting Confidence-maps to Displacement

Given S ∈ Rn×m, normalize for each assigned point i , its
corresponding candidate scores given by the i th row of S, denoted
S(i , 1...m).

We then use it to weight the matrix of positions P ∈ Rm×2 and
subtract the position of match i

di =
expαS(i , 1...m)∑

j expαS(i , j)
P− Pi (5)
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Loss
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CUB Dataset

11,788 images of 200 bird categories, with bounding box object
localization and 15 annotated parts

The number of points in the two graphs are maximum n = 15 and
m = 256
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Pascal-VOC Dataset

Annotations of body parts for 20 semantic classes. There are 7,000
annotated examples for training, and 1,700 for testing
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Pascal-VOC Dataset
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Pascal-VOC Dataset
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Conclusion

End-to-end learning framework for graph matching

The main challenges are the calculation of backpropagated derivatives
through complex matrix layers and the implementation of the entire
framework in a computationally efficient manner

Limited to small graphs
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