Graph Edit Distance Computation via Graph Neural Networks

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, Wei Wang

Presenter: Jack Lanchantin
https://qdata.github.io/deep2Read

Outline

(1) Introduction
(2) Background
(3) SimGNN

44 Experiments and Results
(5) Conclusion

Outline

(1) Introduction

(2) Background

(3) SimGNN

4 Experiments and Results

(5) Conclusion

Graph Similarity Matching

Graph similarity: finding a graph most similar to query graph (e.g. finding the chemical compounds similar to query compound).

SimGNN

- Graph similarity/distance computation, such as Graph Edit Distance and Maximum Common Subgraph, are the core operation of graph similarity search, but very costly to compute
- The proposed approach, called SimGNN, uses two steps
- First, a learnable embedding function is used to map every graph into an embedding vector for each node (or a global embedding vector)
- Second, a graph similarity function is used to compare the two graphs

Task

Outline

(1) Introduction

(2) Background

(3) SimGNN

4 Experiments and Results

(5) Conclusion

Graph Edit Distance

The GED between the graph to the left and the graph to the right is 3 , as the transformation needs 3 edit operations: (1) an edge deletion, (2) an edge insertion, and (3) a node relabeling.

Outline

(1) Introduction
 (2) Background

(3) SimGNN

4) Experiments and Results

(5) Conclusion

SimGNN

Stage I: Node Embedding

- 3 Layer GCN to produce node embeddings
- Nodes, denoted by $\boldsymbol{u}_{\boldsymbol{n}} \in \mathbb{R}^{D}$, are updated as follows:

$$
\begin{equation*}
\operatorname{conv}\left(\boldsymbol{u}_{\boldsymbol{n}}\right)=\sigma\left(\sum_{m \in \mathcal{N}(n)} \frac{1}{\sqrt{d_{n} d_{m}}} \boldsymbol{u}_{\boldsymbol{m}} \boldsymbol{W}_{1}^{(/)}\right) \tag{1}
\end{equation*}
$$

$\mathcal{N}(n)$ is the first-order neighbors of node n, d_{n} is the degree of node n, $W_{1}^{(I)} \in \mathbb{R}^{D^{\prime} \times D^{\prime+1}}$ is the weight matrix for the l-th GCN layer

Stage II: Graph Embedding: Global Context-Aware Attention

- Given node embeddings $\boldsymbol{u}_{\boldsymbol{n}} \in \mathbb{R}^{D}$, global graph context $\boldsymbol{c} \in \mathbb{R}^{D}$ is computed, which is an average of node embeddings followed by tanh:

$$
\begin{equation*}
\boldsymbol{c}=\tanh \left(\left(\left(\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{u}_{\boldsymbol{n}}\right) \boldsymbol{W}_{2}\right),\right. \tag{2}
\end{equation*}
$$

where $\boldsymbol{W}_{\mathbf{2}} \in \mathbb{R}^{D \times D}$ is a learnable weight matrix

Stage II: Graph Embedding: Global Context-Aware Attention

- Based on \boldsymbol{c}, we can compute one attention weight for each node embedding a_{n} by computing an inner product with \boldsymbol{c}
- Graph embedding $\boldsymbol{h} \in \mathbb{R}^{D}$ is the weighted sum of node embeddings:

$$
\begin{equation*}
\boldsymbol{h}=\sum_{n=1}^{N} f_{2}\left(\boldsymbol{u}_{\boldsymbol{n}}^{\boldsymbol{T}} \boldsymbol{c}\right) \boldsymbol{u}_{\boldsymbol{n}} \tag{3}
\end{equation*}
$$

where $f_{2}(\cdot)$ is the sigmoid function $\sigma(\cdot)$, i.e. not normalized

Stage III: Graph-Graph Interaction: Neural Tensor Network (Strategy I)

- Instead of using inner product between graph embeddings, $\boldsymbol{h}_{\boldsymbol{i}} \in \mathbb{R}^{D}$, $\boldsymbol{h}_{\boldsymbol{j}} \in \mathbb{R}^{D}$ we use Neural Tensor Networks to model the relations:

$$
g\left(\boldsymbol{h}_{\boldsymbol{i}}, \boldsymbol{h}_{\boldsymbol{j}}\right)=\operatorname{sigma}\left(\boldsymbol{h}_{\boldsymbol{i}}^{\boldsymbol{T}} \boldsymbol{W}_{3}^{[1: K]} \boldsymbol{h}_{\boldsymbol{j}}+\boldsymbol{V}\left[\begin{array}{l}
\boldsymbol{h}_{\boldsymbol{i}} \tag{4}\\
\boldsymbol{h}_{j}
\end{array}\right]\right)
$$

where $W_{3}^{[1: K]} \in \mathbb{R}^{D \times D \times K}$ is a weight tensor, [] denotes the concatenation operation, $\boldsymbol{V} \in \mathbb{R}^{K \times 2 D}$ is a weight vector, K is a hyperparameter controlling the number of interaction (similarity) scores for each graph embedding pair

Stage IV: Graph Similarity Score Computation

- MLP used to output final similarity score from neural tensor vector.
- $\hat{s}_{i j} \in \mathbb{R}$ is predicted and compared against the ground-truth similarity score $\left.s\left(\mathcal{G}_{i}, \mathcal{G}_{j}\right)\right)$:

$$
\begin{equation*}
\mathcal{L}=\frac{1}{|\mathcal{D}|} \sum_{(i, j) \in \mathcal{D}}\left(\hat{s}_{i j}-s\left(\mathcal{G}_{i}, \mathcal{G}_{j}\right)\right)^{2} \tag{5}
\end{equation*}
$$

where \mathcal{D} is the set of training graph pairs, and $s\left(\mathcal{G}_{i}, \mathcal{G}_{j}\right)$ is the ground-truth similarity between \mathcal{G}_{i} and \mathcal{G}_{j}.

Limitations of Strategy One

- The node-level information such as the node feature distribution and graph size may be lost by the graph-level embedding
- In many cases, differences between two graphs lie in small substructures and can't be reflected by a graph level embedding
- To overcome these limitations, consider using the node-level embeddings directly

Stage III: Graph-Graph Interaction: Pairwise Node Comparison (Strategy II)

- If \mathcal{G}_{i} has N_{i} nodes and \mathcal{G}_{j} has N_{j} nodes, there would be $N_{i} N_{j}$ pairwise interaction scores, obtained by $\boldsymbol{S}=\sigma\left(\boldsymbol{U}_{\boldsymbol{i}} \boldsymbol{U}_{\boldsymbol{j}}^{\boldsymbol{T}}\right)$, where $\boldsymbol{U}_{\boldsymbol{i}} \in \mathbb{R}^{N_{i} \times D}$ and $\boldsymbol{U}_{\boldsymbol{j}} \in \mathbb{R}^{N_{j} \times D}$ are the node embeddings of \mathcal{G}_{i} and \mathcal{G}_{j}, respectively.

Stage III: Graph-Graph Interaction: Pairwise Node Comparison (Strategy II)

- If \mathcal{G}_{i} has N_{i} nodes and \mathcal{G}_{j} has N_{j} nodes, there would be $N_{i} N_{j}$ pairwise interaction scores, obtained by $\boldsymbol{S}=\sigma\left(\boldsymbol{U}_{\boldsymbol{i}} \boldsymbol{U}_{\boldsymbol{j}}^{\boldsymbol{T}}\right)$, where $\boldsymbol{U}_{\boldsymbol{i}} \in \mathbb{R}^{N_{i} \times D}$ and $\boldsymbol{U}_{\boldsymbol{j}} \in \mathbb{R}^{N_{j} \times D}$ are the node embeddings of \mathcal{G}_{i} and \mathcal{G}_{j}, respectively.
- One simple way to utilize \boldsymbol{S} is to vectorize it: $\operatorname{vec}(\boldsymbol{S}) \in \mathbb{R}^{N_{i} N_{j}}$, and feed to the fully connected layers. However, there is usually no natural ordering between graph nodes

Stage III: Graph-Graph Interaction: Pairwise Node Comparison (Strategy II)

- To ensure the model is invariant to the graph representations, we extract its histogram features: $\operatorname{hist}(\boldsymbol{S}) \in \mathbb{R}^{B}$, where B is a hyperparameter that controls the number of bins in the histogram.
- The histogram feature vector is normalized and concatenated with the graph-level interaction scores $g\left(\boldsymbol{h}_{\boldsymbol{i}}, \boldsymbol{h}_{\boldsymbol{j}}\right)$, and fed to the MLP

Outline

(1) Introduction

(2) Background

(3) SimGNN

(4) Experiments and Results

(5) Conclusion

Datasets

Dataset	Graph Meaning	\#Graphs	\#Pairs
AIDS	Chemical Compounds	700	490 K
LINUX	Program Dependency Graphs	1000	1 M
IMDB	Actor/Actress Ego-Networks	1500	2.25 M

AIDS Chemical Compounds

Method	mse $\left(10^{-3}\right)$	ρ	τ	p@10	p@20
Beam	12.090	0.609	0.463	$\mathbf{0 . 4 8 1}$	0.493
Hungarian	25.296	0.510	0.378	0.360	0.392
VJ	29.157	0.517	0.383	0.310	0.345
SimpleMean	3.115	0.633	0.480	0.269	0.279
HierarchicalMean	3.046	0.681	0.629	0.246	0.340
HierarchicalMax	3.396	0.655	0.505	0.222	0.295
AttDegree	3.338	0.628	0.478	0.209	0.279
AttGlobalContext	1.472	0.813	0.653	0.376	0.473
AttLearnableGC	1.340	0.825	0.667	0.400	0.488
SimGNN	$\mathbf{1 . 1 8 9}$	$\mathbf{0 . 8 4 3}$	$\mathbf{0 . 6 9 0}$	$\mathbf{0 . 4 2 1}$	$\mathbf{0 . 5 1 4}$

Program Dependence Graphs generated from the Linux kernel

Method	$\mathbf{m s e}\left(10^{-3}\right)$	ρ	τ	$\mathbf{p @ 1 0}$	p@20
Beam	12.090	0.609	0.463	$\mathbf{0 . 4 8 1}$	0.493
Hungarian	25.296	0.510	0.378	0.360	0.392
VJ	29.157	0.517	0.383	0.310	0.345
SimpleMean	3.115	0.633	0.480	0.269	0.279
HierarchicalMean	3.046	0.681	0.629	0.246	0.340
HierarchicalMax	3.396	0.655	0.505	0.222	0.295
AttDegree	3.338	0.628	0.478	0.209	0.279
AttGlobalContext	1.472	0.813	0.653	0.376	0.473
AttLearnableGC	1.340	0.825	0.667	0.400	0.488
SimGNN	$\mathbf{1 . 1 8 9}$	$\mathbf{0 . 8 4 3}$	$\mathbf{0 . 6 9 0}$	$\mathbf{0 . 4 2 1}$	$\mathbf{0 . 5 1 4}$

Actor/Actress Ego-Networks

Table 4: Results on IMDB. Beam, Hungarian, and VJ together are used to determine the ground-truth results.

Method	$\mathbf{m s e}\left(10^{-3}\right)$	ρ	τ	$\mathbf{p @ 1 0}$	$\mathbf{p @ 2 0}$
SimpleMean	3.749	0.774	0.644	0.547	0.588
HierarchicalMean	5.019	0.456	0.378	0.567	0.553
HierarchicalMax	6.993	0.455	0.354	0.572	0.570
AttDegree	2.144	0.828	0.695	0.700	0.695
AttGlobalContext	3.555	0.684	0.553	0.657	0.656
AttLearnableGC	1.455	0.835	0.700	0.732	0.742
SimGNN	$\mathbf{1 . 2 6 4}$	$\mathbf{0 . 8 7 8}$	$\mathbf{0 . 7 7 0}$	$\mathbf{0 . 7 5 9}$	$\mathbf{0 . 7 7 7}$

Outline

(1) Introduction

(2) Background

(3) SimGNN

(4) Experiments and Results

(5) Conclusion

Conclusion

- Used GNN for embedding entire graphs to do graph similarity matching (e.g. querying similary graphs)
- Proposed method is empirically good, but I think the graph embedding and edge similarity parts could be improved
- No edge features used

