Graph Edit Distance Computation via Graph Neural Networks

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, Wei Wang

Presenter: Jack Lanchantin https://qdata.github.io/deep2Read

2 Background

3 SimGNN

4 Experiments and Results

5 Conclusion

Yunsheng Bai, Hao Ding, Song Bian, Ting ClGraph Edit Distance Computation via Graph Presenter: Jack Lanchantin https://qdata.

▶ < ∃ >

2 Background

3 SimGNN

4 Experiments and Results

5 Conclusion

Yunsheng Bai, Hao Ding, Song Bian, Ting ClGraph Edit Distance Computation via Graph Presenter: Jack Lanchantin https://qdata.

A B b A B b

< 行

Graph similarity: finding a graph most similar to query graph (e.g. finding the chemical compounds similar to query compound).

- Graph similarity/distance computation, such as Graph Edit Distance and Maximum Common Subgraph, are the core operation of graph similarity search, but very costly to compute
- The proposed approach, called SimGNN, uses two steps
 - First, a learnable embedding function is used to map every graph into an embedding vector for each node (or a global embedding vector)
 - Second, a graph similarity function is used to compare the two graphs

Yunsheng Bai, Hao Ding, Song Bian, Ting ClGraph Edit Distance Computation via Graph Presenter: Jack Lanchantin https://qdata.

э

2 Background

3 SimGNN

4 Experiments and Results

5 Conclusion

Yunsheng Bai, Hao Ding, Song Bian, Ting ClGraph Edit Distance Computation via Graph Presenter: Jack Lanchantin https://qdata.

(B)

Graph Edit Distance

The GED between the graph to the left and the graph to the right is 3, as the transformation needs 3 edit operations: (1) an edge deletion, (2) an edge insertion, and (3) a node relabeling.

2 Background

Experiments and Results

5 Conclusion

Yunsheng Bai, Hao Ding, Song Bian, Ting ClGraph Edit Distance Computation via Graph Presenter: Jack Lanchantin https://qdata.

★ ∃ ► < ∃ ►</p>

Yunsheng Bai, Hao Ding, Song Bian, Ting ClGraph Edit Distance Computation via Graph Presenter: Jack Lanchantin https://qdata.

A D N A B N A B N A B N

э

Stage I: Node Embedding

- 3 Layer GCN to produce node embeddings
- Nodes, denoted by $\boldsymbol{u_n} \in \mathbb{R}^D$, are updated as follows:

$$\operatorname{conv}(\boldsymbol{u_n}) = \sigma(\sum_{m \in \mathcal{N}(n)} \frac{1}{\sqrt{d_n d_m}} \boldsymbol{u_m} \boldsymbol{W_1}^{(l)})$$
(1)

 $\mathcal{N}(n)$ is the first-order neighbors of node n, d_n is the degree of node n, $W_1^{(l)} \in \mathbb{R}^{D' \times D'^{+1}}$ is the weight matrix for the *l*-th GCN layer

Stage II: Graph Embedding: Global Context-Aware Attention

• Given node embeddings $u_n \in \mathbb{R}^D$, global graph context $c \in \mathbb{R}^D$ is computed, which is an average of node embeddings followed by tanh:

$$\boldsymbol{z} = \tanh\left(\left(\left(\frac{1}{N}\sum_{n=1}^{N}\boldsymbol{u_n}\right)\boldsymbol{W_2}\right),\tag{2}$$

where $W_2 \in \mathbb{R}^{D \times D}$ is a learnable weight matrix

Stage II: Graph Embedding: Global Context-Aware Attention

- Based on *c*, we can compute one attention weight for each node embedding *a_n* by computing an inner product with *c*
- Graph embedding $\boldsymbol{h} \in \mathbb{R}^{D}$ is the weighted sum of node embeddings:

$$\boldsymbol{h} = \sum_{n=1}^{N} f_2(\boldsymbol{u_n^T c}) \boldsymbol{u_n}$$
(3)

where $f_2(\cdot)$ is the sigmoid function $\sigma(\cdot)$, i.e. not normalized

Stage III: Graph-Graph Interaction: Neural Tensor Network (Strategy I)

• Instead of using inner product between graph embeddings, $h_i \in \mathbb{R}^D$, $h_j \in \mathbb{R}^D$ we use Neural Tensor Networks to model the relations:

$$g(\boldsymbol{h}_i, \boldsymbol{h}_j) = sigma(\boldsymbol{h}_i^T \boldsymbol{W}_3^{[1:K]} \boldsymbol{h}_j + \boldsymbol{V} \begin{bmatrix} \boldsymbol{h}_i \\ \boldsymbol{h}_j \end{bmatrix})$$
(4)

where $W_3^{[1:K]} \in \mathbb{R}^{D \times D \times K}$ is a weight tensor, [] denotes the concatenation operation, $V \in \mathbb{R}^{K \times 2D}$ is a weight vector, K is a hyperparameter controlling the number of interaction (similarity) scores for each graph embedding pair

- MLP used to output final similarity score from neural tensor vector.
- *ŝ*_{ij} ∈ ℝ is predicted and compared against the ground-truth similarity score *s*(*G*_i, *G*_j)):

$$\mathcal{L} = rac{1}{|\mathcal{D}|} \sum_{(i,j)\in\mathcal{D}} (\hat{s}_{ij} - s(\mathcal{G}_i, \mathcal{G}_j))^2$$
 (5)

where \mathcal{D} is the set of training graph pairs, and $s(\mathcal{G}_i, \mathcal{G}_j)$ is the ground-truth similarity between \mathcal{G}_i and \mathcal{G}_j .

- The node-level information such as the node feature distribution and graph size may be lost by the graph-level embedding
- In many cases, differences between two graphs lie in small substructures and can't be reflected by a graph level embedding
- To overcome these limitations, consider using the node-level embeddings directly

Stage III: Graph-Graph Interaction: Pairwise Node Comparison (Strategy II)

• If \mathcal{G}_i has N_i nodes and \mathcal{G}_j has N_j nodes, there would be $N_i N_j$ pairwise interaction scores, obtained by $\boldsymbol{S} = \sigma(\boldsymbol{U}_i \boldsymbol{U}_j^T)$, where $\boldsymbol{U}_i \in \mathbb{R}^{N_i \times D}$ and $\boldsymbol{U}_j \in \mathbb{R}^{N_j \times D}$ are the node embeddings of \mathcal{G}_i and \mathcal{G}_j , respectively.

Stage III: Graph-Graph Interaction: Pairwise Node Comparison (Strategy II)

- If \mathcal{G}_i has N_i nodes and \mathcal{G}_j has N_j nodes, there would be N_iN_j pairwise interaction scores, obtained by $\boldsymbol{S} = \sigma(\boldsymbol{U}_i \boldsymbol{U}_j^T)$, where $\boldsymbol{U}_i \in \mathbb{R}^{N_i \times D}$ and $\boldsymbol{U}_j \in \mathbb{R}^{N_j \times D}$ are the node embeddings of \mathcal{G}_i and \mathcal{G}_j , respectively.
- One simple way to utilize **S** is to vectorize it: $vec(S) \in \mathbb{R}^{N_i N_j}$, and feed to the fully connected layers. However, there is usually no natural ordering between graph nodes

Stage III: Graph-Graph Interaction: Pairwise Node Comparison (Strategy II)

- To ensure the model is invariant to the graph representations, we extract its histogram features: hist(S) ∈ ℝ^B, where B is a hyperparameter that controls the number of bins in the histogram.
- The histogram feature vector is normalized and concatenated with the graph-level interaction scores $g(h_i, h_j)$, and fed to the MLP

2 Background

3 SimGNN

Experiments and Results

5 Conclusion

Yunsheng Bai, Hao Ding, Song Bian, Ting ClGraph Edit Distance Computation via Graph Presenter: Jack Lanchantin https://qdata.

★ ∃ ► < ∃ ►</p>

Dataset	Graph Meaning	#Graphs	#Pairs
AIDS	Chemical Compounds	700	490K
LINUX	Program Dependency Graphs	1000	1M
IMDB	Actor/Actress Ego-Networks	1500	2.25M

Yunsheng Bai, Hao Ding, Song Bian, Ting ClGraph Edit Distance Computation via Graph Presenter: Jack Lanchantin https://qdata.

イロト イヨト イヨト イヨト

э

Method	mse(10 ⁻³)	ρ	τ	p@10	p@20
Beam	12.090	0.609	0.463	0.481	0.493
Hungarian	25.296	0.510	0.378	0.360	0.392
VJ	29.157	0.517	0.383	0.310	0.345
SimpleMean	3.115	0.633	0.480	0.269	0.279
HierarchicalMean	3.046	0.681	0.629	0.246	0.340
HierarchicalMax	3.396	0.655	0.505	0.222	0.295
AttDegree	3.338	0.628	0.478	0.209	0.279
AttGlobalContext	1.472	0.813	0.653	0.376	0.473
AttLearnableGC	1.340	0.825	0.667	0.400	0.488
SimGNN	1.189	0.843	0.690	0.421	0.514

Yunsheng Bai, Hao Ding, Song Bian, Ting ClGraph Edit Distance Computation via Graph Presenter: Jack Lanchantin https://qdata.

• • = • • = •

Program Dependence Graphs generated from the Linux kernel

Method	mse(10 ⁻³)	ρ	τ	p@10	p@20
Beam	12.090	0.609	0.463	0.481	0.493
Hungarian	25.296	0.510	0.378	0.360	0.392
VJ	29.157	0.517	0.383	0.310	0.345
SimpleMean	3.115	0.633	0.480	0.269	0.279
HierarchicalMean	3.046	0.681	0.629	0.246	0.340
HierarchicalMax	3.396	0.655	0.505	0.222	0.295
AttDegree	3.338	0.628	0.478	0.209	0.279
AttGlobalContext	1.472	0.813	0.653	0.376	0.473
AttLearnableGC	1.340	0.825	0.667	0.400	0.488
SimGNN	1.189	0.843	0.690	0.421	0.514

Table 4: Results on IMDB. Beam, Hungarian, and VJ togetherare used to determine the ground-truth results.

Method	mse(10 ⁻³)	ρ	τ	p@10	p@20
SimpleMean	3.749	0.774	0.644	0.547	0.588
HierarchicalMean	5.019	0.456	0.378	0.567	0.553
HierarchicalMax	6.993	0.455	0.354	0.572	0.570
AttDegree	2.144	0.828	0.695	0.700	0.695
AttGlobalContext	3.555	0.684	0.553	0.657	0.656
AttLearnableGC	1.455	0.835	0.700	0.732	0.742
SimGNN	1.264	0.878	0.770	0.759	0.777

2 Background

3 SimGNN

4 Experiments and Results

Yunsheng Bai, Hao Ding, Song Bian, Ting ClGraph Edit Distance Computation via Graph Presenter: Jack Lanchantin https://qdata.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 行

- Used GNN for embedding entire graphs to do graph similarity matching (e.g. querying similary graphs)
- Proposed method is empirically good, but I think the graph embedding and edge similarity parts could be improved
- No edge features used