Heterogeneous Graph Neural Networks for Malicious Account Detection

Ziqi Liu et al.

Ant Financial Service, Georgia Tech

27th ACM International Conference on Information and Knowledge Management (CIKM'18) Industry and Case Study Paper

> Presenter: Weilin Xu https://qdata.github.io/deep2Read

Ziqi Liu et al. (Alibaba, GeorgiaTech) Heterogeneous Graph Neural Networks for MaPresenter: Weilin Xu https://qdata.githu

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

Ziqi Liu et al. (Alibaba, GeorgiaTech) Heterogeneous Graph Neural Networks for MaPresenter: Weilin Xu https://qdata.githu

イロン イ理 とく ヨン イ ヨン

э.

Malicious Account Detection:

To determine if an account is owned by adversary or normal user.

Ziqi Liu et al. (Alibaba, GeorgiaTech) Heterogeneous Graph Neural Networks for MaPresenter: Weilin Xu https://qdata.githu

イロト 不得 トイヨト イヨト

- 20

Malicious Account Detection:

To determine if an account is owned by adversary or normal user.

Proposed solution:

Graph Embeddings for Malicious accounts (GEM)

A (10) × (10)

Patterns observed from malicious accounts.

• Device aggregation

Adversary logins to many accounts on one device.

イロト 不得下 イヨト イヨト 二日

Device Aggregation

Figure: Left: Normal; Right: Malicious.

Ziqi Liu et al. (Alibaba, GeorgiaTech) Heterogeneous Graph Neural Networks for MiPresenter: Weilin Xu https://qdata.githu

Patterns observed from malicious accounts.

- Device aggregation Adversary logins to many accounts on one device.
- Activity aggregation

Adversary's accounts behave in batches.

イロト 不得 トイヨト イヨト 二日

Activity Aggregation

Figure: Left: Normal; Right: Malicious.

Ziqi Liu et al. (Alibaba, Georgia Tech) Heterogeneous Graph Neural Networks for MiPresenter: Weilin Xu https://qdata.githu

Heterogeneous Graph Construction

- Vertices: 1) Account vertices; 2) Device vertices.
- Edges: Account is active on Device.

Represented as **adjacency matrix** $A \in \{0, 1\}^{N,N}$. $A_{i,j} = 1$: account *i* active on device *j* $A^{(d)}$: subgraph ignoring edges to non-type-*d* devices.

Features of Vertices: $X \in \mathbb{R}^{N,p+|\mathcal{D}|+200}$

Account vertices only: p time slots, with activity counts;

 $p = 7 \times 24 = 168$ slots, with activity counts.

Device vertices only: one hot $|\mathbb{D}|$.

6 types of devices.

Account vertices only: 200 demographics features.

Broad Device Concept

Six device types.

- Four Hardware ID.
 - Phone number
 - WiFi MAC address
 - International Mobile Subscriber Identity (IMSI)
 - TID

Random number generated with IMSI and IMEI.

- Two Proprietary Composite Fingerprint
 - User Machine ID (UMID) Unclear
 - Alipay Device ID (APDID)

Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.

Six device types.

- Four Hardware ID.
 - Phone number
 - WiFi MAC address
 - International Mobile Subscriber Identity (IMSI)
 - TID

Random number generated with IMSI and IMEI.

- Two Proprietary Composite Fingerprint
 - User Machine ID (UMID) 0.4412 <Secret Weapon> Unclear
 - Alipay Device ID (APDID)
 - Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.

Six device types.

- Four Hardware ID.
 - Phone number 0.2952
 - WiFi MAC address
 - International Mobile Subscriber Identity (IMSI)
 - TID

Random number generated with IMSI and IMEI.

- Two Proprietary Composite Fingerprint
 - User Machine ID (UMID) 0.4412 <Secret Weapon> Unclear
 - Alipay Device ID (APDID)
 - Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.

Six device types.

- Four Hardware ID.
 - Phone number 0.2952
 - WiFi MAC address 0.13
 - International Mobile Subscriber Identity (IMSI)
 - TID

Random number generated with IMSI and IMEI.

- Two Proprietary Composite Fingerprint
 - User Machine ID (UMID) 0.4412 <Secret Weapon> Unclear
 - Alipay Device ID (APDID)

Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.

Six device types.

- Four Hardware ID.
 - Phone number 0.2952
 - WiFi MAC address 0.13
 - International Mobile Subscriber Identity (IMSI)
 - TID

Random number generated with IMSI and IMEI.

- Two Proprietary Composite Fingerprint
 - User Machine ID (UMID) 0.4412 <Secret Weapon> Unclear
 - Alipay Device ID (APDID) 0.0142
 - Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.

Six device types.

- Four Hardware ID.
 - Phone number 0.2952
 - WiFi MAC address 0.13
 - International Mobile Subscriber Identity (IMSI)
 - TID 0.0125

Random number generated with IMSI and IMEI.

- Two Proprietary Composite Fingerprint
 - User Machine ID (UMID) 0.4412 <Secret Weapon> Unclear
 - Alipay Device ID (APDID) 0.0142
 - Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.

Models

Goal: learn embedding matrix $H(i^{th} \text{ row is } h_i \text{ of vertex } i)$

$$\begin{aligned} H^{(0)} &\leftarrow \mathbf{0} \\ \text{for} \quad t = 1, ..., T \\ H^{(t)} &\leftarrow \sigma(X \cdot W + \frac{1}{|\mathcal{D}|} \sum_{d=1}^{|\mathcal{D}|} A^{(d)} \cdot H^{(t-1)} \cdot V_d) \end{aligned}$$

Embeddings at t^{th} layer: $H^{(t)} \in \mathbb{R}^{N,k}$ **Features**: $X \in \mathbb{R}^{N,p+|\mathcal{D}|}$, fed into each layer, ResNet alike. **Trainable parameters**: $\{V_d\} \in \mathbb{R}^{k \times k}$;

 $W \in \mathbb{R}^{P \times k} (P = p + |\mathcal{D}|)$, shared among subgraphs. **Adjacency matrix**: $A \in \{0, 1\}^{N,N}$ **Hyper-parameters**: Embedding size k; #hidden layers T (#hops a vertex needs to look at)

Attention Mechanism

$$\alpha = [\alpha_1, ..., \alpha_{|\mathbb{D}|}]^T \in \mathbb{R}^{|\mathbb{D}|}$$

softmax $(\alpha_d) = \frac{exp\alpha_d}{\sum_i exp\alpha_i}$
 $H^{(t)} \leftarrow \sigma(X \cdot W + \sum_{d \in \mathbb{D}} softmax(\alpha_d) \cdot A^{(d)} \cdot H^{(t-1)} \cdot V_d)$

Ziqi Liu et al. (Alibaba, GeorgiaTech) Heterogeneous Graph Neural Networks for MaPresenter: Weilin Xu https://qdata.githu

Logistic Regression Classifier

$$\min_{W, \{V_d\}, u} \mathbb{L}(W, \{V_d\}, u) = -\sum_{i}^{N_0} \log \sigma(y_i \cdot (u^\top h_i))$$
(1)
where $\sigma = \frac{1}{1 + exp(-x)}, u \in \mathbb{R}^k$

• •

Expectation Maximization style e-step: compute embeddings based on W, $\{V_d\}$. m-step: optimize u, while freezing embeddings.

イロト 不得下 イヨト イヨト 二日

Datasets

4 consecutive weeks of data from Alipay.
8M vertices, 10M edges
1.7M train labels, 0.2M test labels (#account vertices?)
374 features

374 features for each vertex:

[Account Only] $p = 7 \times 24 = 168$ slots, with activity counts. [Device Only] 6 types of devices. [Account Only] 200 demographics features (yet another secret weapon?)

Train with first 6 days; test with the last day. 4 isolated experiments.

Comparison Methods

Baseline

- Connected Subgraph
- GBDT + Graph
- GBDT + Node2Vec
- Graph Convolutional Network
- Variants of this work
 - Graph Embeddings for Malicious accounts (GEM)
 - GEM-attention

Result - F-1 Score

	week 1	week 2	week 3	week 4
Connected Subgraphs	0.5033	0.5567	0.58	0.5421
GBDT+Graph	0.7423	0.7598	0.7693	0.6639
GBDT+Node2Vec	0.741	0.7571	0.769	0.6626
GCN	0.7729	0.7757	0.7957	0.6919
GEM (Ours)	0.7992	0.8066	0.8191	0.718
GEM-attention (Ours)	0.8165	0.8133	0.8244	0.7344

Figure: F-1 Score

Ziqi Liu et al. (Alibaba, GeorgiaTech) Heterogeneous Graph Neural Networks for MaPresenter: Weilin Xu https://qdata.githu

	week 1	week 2	week 3	week 4
Connected Subgraphs	0.6689	0.6692	0.665	0.6938
GBDT+Graph	0.8878	0.8835	0.8707	0.8778
GBDT+Node2Vec	0.8884	0.883	0.8711	0.8773
GCN	0.8995	0.8932	0.8922	0.881
GEM (Ours)	0.9159	0.9238	0.9193	0.9082
GEM-attention (Ours)	0.9364	0.9293	0.9259	0.9155

Figure: AUC

Ziqi Liu et al. (Alibaba, Georgia Tech) Heterogeneous Graph Neural Networks for MaPresenter: Weilin Xu https://qdata.githu

98% precision over 89% of rule-based system. Recall unknown.

Ziqi Liu et al. (Alibaba, GeorgiaTech) Heterogeneous Graph Neural Networks for MaPresenter: Weilin Xu https://qdata.githu

Precision-Recall Curves on Week 4

[Guess: Recall at 98% precision is about 0.5%.]

Figure: Precision-Recall Curves on Week 4.

Ziqi Liu et al. (Alibaba, GeorgiaTech) Heterogeneous Graph Neural Networks for MaPresenter: Weilin Xu https://qdata.githu

- Novel graph neural network model for heterogeneous graph.
- Exploit two weaknesses of adversary: Device aggregation & Activity aggregation.
- Detect 10K malicious accounts daily at Alipay.
- Future work: beyond adjacency matrix.

イロト イヨト イヨト イヨト

Not reproducible.

No open dataset or open source code.

Lack details of secret weapons.

• Adaptive adversary.

Fake Hardware ID by hijacking system APIs on rooted devices. Malicious account can be more active.