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A simplified image (feature) matching problem

Match the feature points across multiple images.
N images
M repeatable feature points, with known coordinates, and initial
descriptors (e.g. SIFT)

A simplified version of the general image matching problem

Goal→ assignment problem: find a one-to-one mapping between
the points in each image pair, and these mappings are globally
(cycle) consistent.

Figure: Multiple image matching.
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Target representation

Soft assignment by learning an embedding vector for each point.
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Figure: Illustration of the embedding the model is training to learn. The colors
used here are inconsistent.

Credit: Stephen Phillips, Kostas Daniilidis (shortinst)All Graphs Lead to Rome: Learning Geometric and Cycle-Consistent Representations with Graph Convolutional NetworksPresenter: Fuwen Tan https://qdata.github.io/deep2Read 3 / 15

https://qdata.github.io/deep2Read


Adjacent Matrix

E = {Ei}i=1···(N·M)

Ideal adjacent matrix of all features
Â ∈ R(N·M)×(N·M)

Âij = EiET
j ∈ {0,1}

i and j are connected if they represent the same 3D point.
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Graph Convolution

E (l+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 E (l)W (l)
)

(1)

E0 ∈ R(N·M)×128: hand-crafted features
L2-normalized SIFT + log scale SIFT + calibrated x-y position +
orientation.

Ã = A + I ∈ R(N·M)×(N·M)

D̃ii =
∑

j Ãij

A: a soft adjacent matrix computed from E0. And I guess they
keep it fixed for each training sample.
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Cycle consistency loss [4]

L(Ã,EET ) = | Ã− EET | (2)

E: final embedding
The paper uses A in (2), but I guess it should be Ã
The name (cycle consistency loss) is from another
optimization-based paper [4]
Why not use the ground-truth adjacent matrix?

The paper claims the method is unsupervised.
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Geometric consistency loss

L(E) =
∑
i,j

< Ei ,Ej > Gij (3)

M = RT
c(i)[Tc(j) − Tc(i)]×Rc(j) (4)

Gij =
∣∣∣X T

i MXj

∣∣∣ (5)

Xi ∈ R3: homogeneous normalized image coordinates for Ei

c(i): the camera for Ei

Rc(i),Tc(i): the camera pose for c(i)

M ∈ R3×3: essential matrix [3], wiki
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Unsupervised?

G = {Gij} is very similar with 1− Â;

(Â: ground-truth adjacent matrix)
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Overview
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Figure: Illustration of the approach of this work.
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Experiment 1: synthetic graph dataset

1 M points (unknown M) in 3D, with a ground-truth embedding
vector for each point;

2 Ã: random permutation matrix (ground-truth adjacent matrix) +
gaussian noise

3 From (1) (2), we can have the ground-truth E
4 E0: E + gaussian noise, which is used as baseline
5 12 layers GCN with ReLU activation and skip connection

(unknown architecture);
6 Just the first (cycle consistency) loss
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Experiment 1: observations

1 Ã is from ground-truth instead of E0

2 The final embedding E is trained using a noisy ground-truth
adjacent matrix. Intuitively, E should be better than E0
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Experiment 1: results

Method Same Point Similarities Different Point Similarities

Ideal 1.00e+0 ± 0.00e+0 0.00e+0 ± 0.00e+0
Initialization Baseline 5.11e-1 ± 1.68e-2 2.56e-1 ± 2.06e-1
3 Views, Noiseless 9.96e-1 ± 7.70e-3 1.16e-1 ± 1.32e-1
5 Views, Noiseless 1.00e+0 ± 4.15e-4 1.22e-1 ± 1.67e-1
3 Views, Added Noise 9.96e-1 ± 7.70e-3 1.16e-1 ± 1.32e-1
5 Views, Added Noise 9.89e-1 ± 2.47e-2 7.67e-2 ± 1.56e-1
6 Views, Added Noise 9.84e-1 ± 3.16e-2 7.46e-2 ± 1.57e-1
3 Views, 5% Outliers 9.29e-1 ± 1.79e-1 1.41e-1 ± 1.48e-1
3 Views, 10% Outliers 9.27e-1 ± 1.79e-1 1.40e-1 ± 1.51e-1

Table: Results on Synthetic correspondence graphs. The ‘Same Point
Similarities’ column is the similarities for true corresponding points, while the
‘Different Point Similarities’ is for points that do not correspond. Losses tested
against ground truth correspondence graph adjacency matrices. Our method
was not trained on ground truth correspondences but using unsupervised
methods.
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Experiment 2: Rome 16K Graph Dataset [2]

1 A dataset consists of 16000 images of historical sites in Rome,
with corresponding annotations;

2 80 points (M = 80) in 3D;
3 Image triplets and quadruplets (N = 3 or 4)
4 12-layers GCN, skip connection between the 6th and 12th layers,

still unknown architecture
5 Only evaluate the L1 and L2 losses, no evaluation on the accuracy.
6 Still cannot outperform off-the-shelf not SoA methods.
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Experiment 2: results

Method (3 Views) L1 Loss L2 Loss Run Time (sec)
MatchALS [5] 15 Iterations 0.052 ± 0.003 0.010 ± 0.002 0.021 ± 0.003
MatchALS [5] 25 Iterations 0.045 ± 0.007 0.009 ± 0.003 0.034 ± 0.003
MatchALS [5] 50 Iterations 0.016 ± 0.008 0.007 ± 0.003 0.065 ± 0.006
PGDDS [1] 15 Iterations 0.016 ± 0.002 0.006 ± 0.002 0.287 ± 0.043
PGDDS [1] 25 Iterations 0.014 ± 0.002 0.005 ± 0.002 0.613 ± 0.089
PGDDS [1] 50 Iterations 0.013 ± 0.002 0.005 ± 0.002 1.430 ± 0.234
Spectral 0.054 ± 0.005 0.018 ± 0.004 0.018 ± 0.004
GCN, 12 Layers (ours) 0.025 ± 0.003 0.016 ± 0.003 0.039 ± 0.009
Method (4 Views) L1 Loss L2 Loss Run Time (sec)
MatchALS [5] 15 Iterations 0.064 ± 0.005 0.012 ± 0.002 0.030 ± 0.004
MatchALS [5] 25 Iterations 0.041 ± 0.010 0.008 ± 0.004 0.048 ± 0.005
MatchALS [5] 50 Iterations 0.011 ± 0.008 0.005 ± 0.003 0.094 ± 0.008
PGDDS [1] 15 Iterations 0.015 ± 0.002 0.006 ± 0.001 0.436 ± 0.090
PGDDS [1] 25 Iterations 0.014 ± 0.002 0.005 ± 0.001 0.961 ± 0.181
PGDDS [1] 50 Iterations 0.013 ± 0.002 0.005 ± 0.002 2.056 ± 0.424
Spectral Method 0.055 ± 0.004 0.017 ± 0.003 0.028 ± 0.003
GCN, 12 Layers (ours) 0.023 ± 0.003 0.015 ± 0.002 0.056 ± 0.017

Table: Results on Rome16K Correspondence graphs. Our method was not
trained on ground truth correspondences but using unsupervised methods
and geometric side losses. As our method gives soft labels, we use cannot
use precision or recall as is standard in testing cycle consistency [5]. Thus we
test against ground truth correspondence graph adjacency matrices
computed from the bundle adjustment output.
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Conclusion

Over-claiming;
The formulation seems odd;
Experiments cannot demonstrate the effectiveness of the method;
The figures are not well explained in the paper.
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