Adversarial Attacks on Graph Structured Data

Author: Hanjun Dai

Georgia Tech College of Computing

Presenter: Faizan Ahmad https://qdata.github.io/deep2Read

Author: Hanjun Dai

1 Introduction

2 Related Work

3 Attack Model

4 Evaluation

Author: Hanjun Dai

Adversarial Attacks on Graph Structured DatiPresenter: Faizan Ahmad https://qdata.g.

< ∃⇒

Introduction

- What are Adversarial Attacks?
- Success of Adversarial Attacks
 - Images
 - Text
 - Graphs? Adversaries in graph-based domains.

57.7% confidence

• Adversarial Attacks on Graph & Node Classification by changing graph structured (edges).

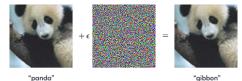


Figure: Adversarial Attack Example. Carefully crafted image is added to the input to make the model misclassify it.

99.3% confidence

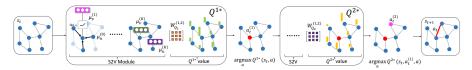


Figure: Small edge perturbations of the graph structure lead to misclassification of the target

- Edge modification achieved by
 - Reinforcement Learning (Q-learning)
 - 2 Random Modifications
 - Gradient based attack
 - Genetic Algorithms

• Large body of work on adversarial attacks for Images and Text

- DeepFool (Moosavi et al. [1])
- Adversarial Examples in Physical World (Kurakin et al. [2])
- Hotflip (Ebrahimi et al. [3])
- Plenty more ..
- No work on adversarial attacks for graphs
- Many new challenges
 - Discrete Domain
 - Network Effects

- Input Graphs $G_1, G_2, ..., G_n \in G$
- G = (V, E)
 - V is the set of nodes
 - *E* is the set of edges
 - Nodes and edges can have featured denoted by $x(v) \in R^{D_f}$ and $w(e) \in R^{D_e}$ respectively
- Graph classification (inductive)
- Node classification $c_i \in V$ (transductive)
- GNN family models as:

$$u_{v}^{(k)} = h^{(k)}(\{w(u, v), x(u), u_{u}^{(k-1)}\}_{u \in N(v)}, x(v), u_{v}^{k-1})$$

- Graph Neural Networks
 - Node Embeddings/Classification [4]
 - Graph Classification [5]
- Adversarial Attacks
 - Evasion Attacks [1]
 - Poisoning Attacks [6]
- Adversarial Attacks on Graphs
 - Using Greedy Approximation (Last Time)
 - Via Reinforcement Learning (This Work)

Attack Model Problem Statement

- Original Graph G = (A, X)
- Perturbed Graph $\hat{G} = (\hat{A}, X)$
- Optimization problem becomes:

$$egin{aligned} & \max_{\hat{G}} f(\hat{G},c)
eq y \ & s.t.\hat{G} = g(f,(G,c,y)) \ & I(G,\hat{G},c) = 1 \end{aligned}$$

• I is equivalence estimator (how similar are two graphs) $I(G, \hat{G}, c) = |(E - \hat{E})U(\hat{E} - E)| < m$ $\hat{E} \subseteq N(G, b)$

- Attack is modeled as a markov decision process
 - Action a: Add or delete edges
 - State s: Modified graph
 - Reward r: Whether the classifier is fooled
 - -1 if no, 1 if yes
- Reward can be discrete, or continuous.
- Sample trajectory: (*s*₁, *a*₁, *r*₁, ..., *s*_{*m*}, *a*_{*m*}, *r*_{*m*}, *s*_{*m*+1})
- Q-learning for optimization

• Bellman optimality equation to pick the best action using Q function

$$Q^*(s_t, a_t) = r(s_t, a_t) + \lambda \max_{a^*} Q^*(s_{t+1}, a^*)$$

- $Q^*(s_t, a_t) =$ Immediate Reward + Expected Future Reward
- Implicitly suggest greedy policy
- For efficiency, decompose into two Q functions

$$Q^{1*}(s_t, a_t^{(1)}) = max_{a_t^{(2)}}Q^{2*}(s_t, a_t^{(1)}, a_t^{(2)})$$
$$Q^{2*}(s_t, a_t^{(1)}, a_t^{(2)}) = r(s_t, a_t \leftarrow (a_t^{(1)}, a_t^{(2)}) + max_{a_{t+1}^{(1)}}Q^{1*}(s_t, a_{t+1}^{(1)})$$

• Final Q function to learn

$$max_{\theta} \sum_{i=0}^{N} Q^*(a_t|s_t;\theta)[r(\hat{G},c)]$$

• How to learn? Use GNNs

$$Q^{1*}(s_t, a_t^{(1)}) = W_{Q_1}^{(1)} \sigma(W_{Q_1}^{(2)}[u_{a_t^{(1)}}, u(s_t)])$$

$$Q^{2*}(s_t, a_t^{(1)}, a_t^{(2)}) = W_{Q_2}^{(1)} \sigma(W_{Q_2}^{(2)}[u_{a_t^{(1)}}, u_{a_t^{(2)}}, u(s_t)])$$

Author: Hanjun Dai

Adversarial Attacks on Graph Structured DataPresenter: Faizan Ahmad https://qdata.g.

イロト イボト イヨト イヨト

э

• Use a formulation of GNNs that allow gradients computations

$$\mu_{v}^{(k)} = h^{(k)} \left(\{ \alpha_{u,v} [w(u,v), x(u), \mu_{u}^{(k-1)}] \}_{u \in \mathcal{N}(v)} \cup \\ \{ \alpha_{u',v} [w(u',v), x(u'), \mu_{u'}^{(k-1)}] \}_{u' \notin \mathcal{N}(v)}, \\ x(v), \mu_{v}^{(k-1)} \right), k \in \{1, 2, ..., K\}$$
(17)

Find gradients for each edge and do gradient ascent

$$\frac{\partial \mathcal{L}}{\partial \alpha_{u,v}} = \sum_{k=1}^{K} \frac{\partial \mathcal{L}}{\mu_k}^{\top} \cdot \frac{\partial \mu_k}{\partial \alpha_{u,v}}.$$

Author: Hanjun Dai

Attack Gradient Based White Box

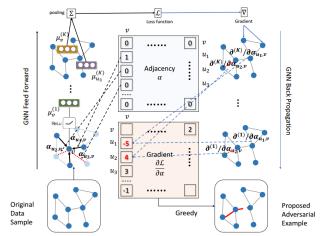


Figure 2. Illustration of graph structure gradient attack. This white-box attack adds/deletes the edges with maximum gradient (with respect to α) magnitudes.

Author: Hanjun Dai

Attack Genetic Algorithms

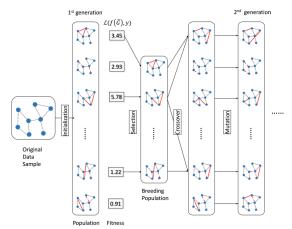


Figure 3. Illustration of attack using genetic algorithm. The population evolves with selection, crossover and mutation operations. Fitness is measured by the loss function.

- 4 回 ト - 4 三 ト

Evaluation and Results Testbed

- Two tasks
 - Graph Level Attack
 - Create 15K graphs using Erdos-Renyi graph model
 - Predict number of connected components (1,2,3)
 - Node Level Attack
 - Citation networks, pubmed, finance

Dataset	Nodes	Edges	Classes	Train/Test I/Test II
Citeseer	3,327	4,732	6	120/1,000/500
Cora	2,708	5,429	7	140/1,000/500
Pubmed	19,717	44,338	3	60/1,000/500
Finance	2,382,980	8,101,757	2	317,041/812/800

Table 3. Statistics of the graphs used for node classification.

Figure: Datasets used

• • = • • = •

Attack Modes

- Multiple attack modes
 - White Box Attack (WBA)
 - Practical Black Box Attack (PBA)
 - Only label is available PBA-D
 - Confidence score is available PBA-C
 - Restrict BA (RBA)

attack test set I		15-20 nodes				
Settings	Methods	K = 2	K = 3	K = 4	$K\!=\!5$	
/	(unattacked)	93.20%	98.20%	98.87%	99.07%	
RBA	RandSampling	78.73%	92.27%	95.13%	97.67%	
WBA	GradArgmax	69.47%	64.60%	95.80%	97.67%	
PBA-C	GeneticAlg	39.87%	39.07%	65.33%	85.87%	
PBA-D	RL-S2V	42.93%	41.93%	70.20%	91.27%	

Figure: Results for attacks on graph classification

Adversarial Attacks on Graph Structured DatiPresenter: Faizan Ahmad https://qdata.g.

• • = • • = •

Method	Citeseer	Cora	Pubmed	Finance
(unattacked)	71.60%	81.00%	79.90%	88.67%
RBA, RandSampling	67.60%	78.50%	79.00%	87.44%
WBA, GradArgmax	63.00%	71.30%	72.4%	86.33%
PBA-C, GeneticAlg	63.70%	71.20%	72.30%	85.96%
PBA-D, RL-S2V	62.70%	71.20%	72.80%	85.43%
Exhaust	62.50%	70.70%	71.80%	85.22%

Figure: Results for attacks on node classification

Adversarial Attacks on Graph Structured DatiPresenter: Faizan Ahmad https://qdata.g.

イロト イポト イヨト イヨト

Evaluation and Results

Attacks Visualization

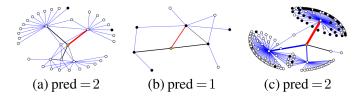


Figure 6. Attack solutions proposed by *GradArgmax* on node classification problem. Attacked node is colored orange. Nodes from the same class as the attacked node are marked black, otherwise white. Target classifier is GCN with K=2.

Figure: Attacks proposed by gradient based method

Table 5. Results after adversarial training by random edge drop.

		0,		/ I
Method	Citeseer	Cora	Pubmed	Finance
(unattacked)	71.30%	81.70%	79.50%	88.55%
RBA, RandSampling	67.70%	79.20%	78.20%	87.44%
WBA, GradArgmax	63.90%	72.50%	72.40%	87.32%
PBA-C, GeneticAlg	64.60%	72.60%	72.50%	86.45%
PBA-D, <i>RL-S2V</i>	63.90%	72.80%	72.90%	85.80%

Figure: Results after adversarial training

• • = • • = •

- · Genetic algorithms work well on discrete domains
- Models trained on large real world datasets are very still hard to attack
- Simple adversarial training methods don't help
- Structure can be enough to mount adversarial attacks (no feature modification in nodes)

- S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, "Deepfool: a simple and accurate method to fool deep neural networks," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2574–2582, 2016.
- A. Kurakin, I. Goodfellow, and S. Bengio, "Adversarial examples in the physical world," *arXiv preprint arXiv:1607.02533*, 2016.
- J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, "Hotflip: White-box adversarial examples for text classification," *arXiv preprint arXiv:1712.06751*, 2017.
- B. Perozzi, R. Al-Rfou, and S. Skiena, "Deepwalk: Online learning of social representations," in *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 701–710, ACM, 2014.
- Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, "Gated graph sequence neural networks," *arXiv preprint arXiv:1511.05493*, 2015.

B. Li, Y. Wang, A. Singh, and Y. Vorobeychik, "Data poisoning attacks on factorization-based collaborative filtering," in *Advances in neural information processing systems*, pp. 1885–1893, 2016.

Author: Hanjun Dai