DeepX: A Software Accelerator for Low-Power Deep

Learning Inference on Mobile Devices

Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev Claudio
Forlivesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar

Presenter: Eamon Collins

ec3bd@virginia.edu

https://qdata.github.io/deep2Read

Nicholas D. Lane, Sourav Bhattacharya, Petk https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read
https://qdata.github.io/deep2Read

Overview

© Motivation
© Previous Work

© Novel Ideas
@ Runtime Layer Compression
@ Deep Architecture Decomposition

@ Results

https://qdata.github.io/deep2Read

Nicholas D. Lane, Sourav Bhattacharya, Petk

https://qdata.github.io/deep2Read

@ Edge-computing becoming more valuable
- More data being gathered by sensor networks

- Communication is expensive in time and power
o Graph Applications?

- Point-cloud LIDAR
- Inference on own network

-0

%
®-
[

~
!

©
©
®

/

v ©
\é
“©©--
7 ©

@\,
I b
©

Nicholas D. Lane, Sourav Bhattacharya, Petk

https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read

@ SVD well-studied and widely used compression technique

o Existing approaches either require retraining or at least using test
data to measure and limit accuracy degradation

@ No existing solution includes runtime compression or flexible
decomposition into multiple heterogeneous processors

Nicholas D. Lane, Sourav Bhattacharya, Petk

https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read

Novel Ideas

@ Runtime Layer Compression
- SVD-based layer compression
- Redundancy Estimation

@ Deep Architecture Decomposition
- Decomposition Search

- Recomposition Inference

Nicholas D. Lane, Sourav Bhattacharya, Petk https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read

Nicholas D. Lane, Sourav Bhattacharya, Petk

Runtime Layer Compression

SVD

errxn — UmeZan VT

nxn

approximated by:

A/L T
Wm><n = mXCZCXCVan
/L _ T
|/Vm><n - UmXCNan

Results in (m 4 n) X ¢ necessary weights instead of mn, ¢ << m,n

After
l:"> Layer Compression

SVD
, — dynamically
generated layer

Per layer operations
are simplified through
the introduction of

each new layer

https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read

Redundancy Estimation

Reconstruction error determined:

A Doy lwi — wil[3
E(Wrﬁxm Wnvan):\/ L1 n; 22

@ Sum the & from each compressed layer to get overall error

@ Error over multiple layers doesn’t linearly correspond to inference
accuracy error, but generally small reconstruction error means small
accuracy degradation

@ User specifies either maximum acceptable error or maximum
acceptable error degradation, both controlled by not allowing over
certain total ¢

Nicholas D. Lane, Sourav Bhattacharya, Petk https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read

Deep Architecture Decomposition

Main Idea: Large complex models are decomposed into unit-blocks that
are tailored to the available processors. e.g. Convolution layers may be
allocated to onboard GPU, and some of the fully connected layers
compressed and allocated to the CPU.
@ Split into a search for the best decomposition plan and the assigning
to processors
@ Constraints can be specified as performance goals for one or more of
the metrics: energy, inference time, model error

[oors | [oors] [pors| [ooRs |

Memory Controller

L2 Cache |

Krait CPU — Core 1 Hexagon DSP

Krait CPU — Core 2 Adreno GPU [

4G LTE, WiFi GPU
BT, FM, USB R

[anm_|
192-core
Krait CPU — Core 3
Connectivity CUDA
ARM

Krait CPU — Core 4

| ARM ‘ | Low Power Core wamceu)

(a) Snapdragon 800 (b) Tegra K1

Nicholas D. Lane, Sourav Bhattacharya, Petk https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read

Large-Picture Decomposition Algorithm

Algorithm 1 Decomposition Search

1: Input: (i) Model with n layers, (ii) E7p (Allowed level of overall
approximation error), and (iii) ey, ez2,...,ex (Energy footprint of all
available processors).

2: for all layer; € Model do

3: layerType = getLayerType(layer;) > Identifying layer type based on
operations

4 if layerType == convolution or pooling then

5: BlockSize = extractFilteringBlocks()

6: else > Fully connected layers

7: BlockSize = extractFeedForwardBlocks()

8: for j =1to P do > Extracting parameters for all processors

9: Ej, B =getProcessorParameters(BlockSize, e;)

10: if layerType == Feed-forward then

11: for k=90,-10,10 do > Linear searching parameter space

12: £ :CompressSVD(WTifi’iri , k) > Estimating Reconstruction
Error

13: if £ < Epp then

14: Save U,y x and NCTXR

15: else

16: break > Stop parameter searching

17: updateLayer(layer;, Umxe, NZX n)

18: applyOptimization(BlockSize, {E}%_,, {B}*_)) > using

Equation 5a
19: Assign blocks to processors as identified by the optimizations

Nicholas D. Lane, Sourav Bhattacharya, Petk https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read

P
in. E;B; T;B;
min « ; + rzneagi{ }
P
s.t. > B =N
i=1
B; < Li,Vi € P,

B;>0,B; € Z,VieP,

- P =1{1,2,...P} the set of processors available

- B; number of blocks assigned to processor i

- L; load limit of processor i

- E; and T; are the energy and time respectively it takes for processor i to
compute a single unit-block

Nicholas D. Lane, Sourav Bhattacharya, Petk https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read

10* 10 10

o
B o
A\ \ Fully Cloud over WIFi v
v 9 #® Deepx v
= = = V' Fartial CPU 4 Partial Cloud "y
g ‘i,'y § § V' Fartizl DeepX + Partial Cloue \"
30 tul 20 f .
3 71. s [) o
§) Vi g v o wm g
w [T u . il o
Ceep Fully Cloue over WIF ;‘ ¥ Partial GPU + Partial Cloue
V' Partial CPU + Partial Cloud Wifi "I V' Partial DeerX + Partial Cleud
@ DeepX (Acc deg 5%) Deep Fuly Cloud DeepX n
V' Partal DeepX + Partial Coud Wi '3 Deep (Ace deg. 5%) .
102 —_———— 102 o 10} . . 5
1 0 1 1 10 10 10 1 10 10 1
Latency (m sec.) Latency {m sec.) Latency (m sec.}
(a) AlexNet - Snapdragon (b) AlexNet - Tegra (c) SpeakerID - Snapdragon

w==_Original model
Acc. drop < 1%
== Acc. drop < 3%
== Acc. drop < 5%
=== Acc. drop < 10%

Model size (MB)

Unmodified <1% <3% <5% <10%
Model sizes (MB) under DeepX

Nicholas D. Lane, Sourav Bhattacharya, Pet! /qdata.github

https://qdata.github.io/deep2Read

@ Not optimal for all network types, variable improvement even among
DNN and CNN

@ Resource need estimator
- Predicting resource usage of a block primitive
- No attempt made at predicting resource availability

- Impact of changes in resource availability not measured

Nicholas D. Lane, Sourav Bhattacharya, Petk https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read

References

ﬁ Y. Gong, et al.,2014
“"Compressing deep convolutional networks using vector quantization,”
arXiv preprint arXiv:1412.6115, 2014.

@ T. He, et al.,

“Reshaping deep neural network for fast decoding by nodepruning,”
ICASSP '14

Nicholas D. Lane, Sourav Bhattacharya, Petk

https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read

The End

Nicholas D. Lane, Sourav Bhattachary: https://qdata.github.io/deep2Read

https://qdata.github.io/deep2Read

	Motivation
	Previous Work
	Novel Ideas
	Runtime Layer Compression
	Deep Architecture Decomposition

	Results

