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@ Deep Architecture Decomposition
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@ Edge-computing becoming more valuable
- More data being gathered by sensor networks

- Communication is expensive in time and power
o Graph Applications?

- Point-cloud LIDAR
- Inference on own network
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@ SVD well-studied and widely used compression technique

o Existing approaches either require retraining or at least using test
data to measure and limit accuracy degradation

@ No existing solution includes runtime compression or flexible
decomposition into multiple heterogeneous processors

Nicholas D. Lane, Sourav Bhattacharya, Petk

https://qdata.github.io/deep2Read


https://qdata.github.io/deep2Read

Novel Ideas

@ Runtime Layer Compression
- SVD-based layer compression
- Redundancy Estimation

@ Deep Architecture Decomposition
- Decomposition Search

- Recomposition Inference

Nicholas D. Lane, Sourav Bhattacharya, Petk https://qdata.github.io/deep2Read


https://qdata.github.io/deep2Read

Nicholas D. Lane, Sourav Bhattacharya, Petk

Runtime Layer Compression

SVD

errxn — UmeZan VT

nxn

approximated by:
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Results in (m 4 n) X ¢ necessary weights instead of mn, ¢ << m,n

After
l:"> Layer Compression

SVD
, — dynamically
generated layer

Per layer operations
are simplified through
the introduction of

each new layer
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Redundancy Estimation

Reconstruction error determined:
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@ Sum the & from each compressed layer to get overall error

@ Error over multiple layers doesn’t linearly correspond to inference
accuracy error, but generally small reconstruction error means small
accuracy degradation

@ User specifies either maximum acceptable error or maximum
acceptable error degradation, both controlled by not allowing over
certain total ¢
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Deep Architecture Decomposition

Main Idea: Large complex models are decomposed into unit-blocks that
are tailored to the available processors. e.g. Convolution layers may be
allocated to onboard GPU, and some of the fully connected layers
compressed and allocated to the CPU.
@ Split into a search for the best decomposition plan and the assigning
to processors
@ Constraints can be specified as performance goals for one or more of
the metrics: energy, inference time, model error
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Large-Picture Decomposition Algorithm

Algorithm 1 Decomposition Search

1: Input: (i) Model with n layers, (ii) E7p (Allowed level of overall
approximation error), and (iii) ey, ez2,...,ex (Energy footprint of all
available processors).

2: for all layer; € Model do

3: layerType = getLayerType(layer;) > Identifying layer type based on
operations

4 if layerType == convolution or pooling then

5: BlockSize = extractFilteringBlocks()

6: else > Fully connected layers

7: BlockSize = extractFeedForwardBlocks()

8: for j =1to P do > Extracting parameters for all processors

9: Ej, B =getProcessorParameters(BlockSize, e;)

10: if layerType == Feed-forward then

11: for k=90,-10,10 do > Linear searching parameter space

12: £ :CompressSVD(WTifi’iri , k) > Estimating Reconstruction
Error

13: if £ < Epp then

14: Save U,y x and NCTXR

15: else

16: break > Stop parameter searching

17: updateLayer(layer;, Umxe, NZX n)

18:  applyOptimization(BlockSize, {E}%_,, {B}*_)) > using

Equation 5a
19: Assign blocks to processors as identified by the optimizations
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- P =1{1,2,...P} the set of processors available

- B; number of blocks assigned to processor i

- L; load limit of processor i

- E; and T; are the energy and time respectively it takes for processor i to
compute a single unit-block
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@ Not optimal for all network types, variable improvement even among
DNN and CNN

@ Resource need estimator
- Predicting resource usage of a block primitive
- No attempt made at predicting resource availability

- Impact of changes in resource availability not measured
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The End
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